Дискретная математика: основные теоретико-множественные конструкции. Ч.VI учебное пособие
Пособие представляет собой VI часть раздела «Основные теоретико-множественные конструкции дискретной математики». В гл. XI рассматриваются следующие понятия: композиции функций (§1); функции, обратные к данной (§2), и отображения (§3). В главе ХII рассматриваются многоместные функции. В §1 изучаются...
Сохранить в:
| Главный автор: | |
|---|---|
| Формат: | Книга |
| Темы: | |
| Online-ссылка: | Перейти к просмотру издания |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
| LEADER | 03878nam0a2200397 4500 | ||
|---|---|---|---|
| 001 | RU/IPR SMART/98850 | ||
| 856 | 4 | |u https://www.iprbookshop.ru/98850.html |z Перейти к просмотру издания | |
| 801 | 1 | |a RU |b IPR SMART |c 20250903 |g RCR | |
| 010 | |a 978-5-87623-708-8 | ||
| 205 | |a Дискретная математика: основные теоретико-множественные конструкции. Ч.VI |b 2025-12-16 | ||
| 333 | |a Гарантированный срок размещения в ЭБС до 16.12.2025 (автопролонгация) | ||
| 100 | |a 20250903d2013 k y0rusy01020304ca | ||
| 105 | |a y j 000zy | ||
| 101 | 0 | |a rus | |
| 102 | |a RU | ||
| 200 | 1 | |a Дискретная математика: основные теоретико-множественные конструкции. Ч.VI |e учебное пособие |f Ю. Ю. Прокопчук, А. И. Широков, В. А. Грузман |g под редакцией Н. В. Крапухиной | |
| 700 | 1 | |a Прокопчук, |b Ю. Ю. |4 070 | |
| 701 | 1 | |a Широков, |b А. И. |4 070 | |
| 701 | 1 | |a Грузман, |b В. А. |4 070 | |
| 702 | 1 | |a Крапухиной, |b Н. В. |4 340 | |
| 330 | |a Пособие представляет собой VI часть раздела «Основные теоретико-множественные конструкции дискретной математики». В гл. XI рассматриваются следующие понятия: композиции функций (§1); функции, обратные к данной (§2), и отображения (§3). В главе ХII рассматриваются многоместные функции. В §1 изучаются произвольные многоместные, в частности, n-местные функции, где n∈N+; свойства таких функций и построенные на их основе «функциональные» конструкции (такие как суперпозиция, парциальные подфункции и т.д.). В §2 исследуются многоместные алгебраические операции и их свойства, а также понятия «группоид» и его «главные элементы»; §3 посвящен лаконичному обзору бинарных алгебраических операций и построенных на их базе основных видов группоидов. В §4 рассматриваются задачи анализа и синтеза группоидов и иллюстрируются их решения. К каждому параграфу приведены упражнения, решения большинства из которых подробно разобраны. Содержание пособия соответствует программе курсов «Основы математической логики» и «Алгоритмы дискретной математики». Предназначено для студентов специальностей 220700, 230100, 230400, 230700 и 231300. | ||
| 210 | |a Москва |c Издательский Дом МИСиС |d 2013 | ||
| 610 | 1 | |a дискретная математика | |
| 610 | 1 | |a функция | |
| 610 | 1 | |a алгебраическая операция | |
| 610 | 1 | |a группоид | |
| 610 | 1 | |a теорема | |
| 675 | |a 510 | ||
| 686 | |a 22.1 |2 rubbk | ||
| 300 | |a Книга находится в премиум-версии IPR SMART. | ||
| 106 | |a s | ||
| 230 | |a Электрон. дан. (1 файл) | ||
| 336 | |a Текст | ||
| 337 | |a электронный | ||
| 503 | 0 | |a Доступна эл. версия. IPR SMART | |
| 215 | |a 183 с. | ||