Analysis of an Existing Method for Detecting Adversarial Attacks on Deep Neural Networks
Analyzes the existing method of detecting adversarial attacks on deep neural networks, proposed by researchers from Carnegie Mellon University and the Korean Institute of Advanced Technologies (KAIST) Ko, G. and Lim, G in 2021. Examines adversarial attacks, as well as the history of research on the...
Сохранить в:
| Главные авторы: | Lapina, M. A., Лапина, М. А., Dudun, G. D., Дюдюн, Г. Д., Kotlyarov, D. V., Котляров, Д. В., Rjevskaya, N. V., Ржевская, Н. В. |
|---|---|
| Формат: | Статья |
| Язык: | English |
| Опубликовано: |
Springer Science and Business Media Deutschland GmbH
2024
|
| Темы: | |
| Online-ссылка: | https://dspace.ncfu.ru/handle/123456789/29181 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Схожие документы
-
A Feature Selection Study on the Bot-IoT Dataset Using Ensemble Classification Techniques
Автор: Lapina, M. A., и др.
Опубликовано: (2024) -
A new approach to training neural networks using natural gradient descent with momentum based on Dirichlet distributions
Автор: Abdulkadirov, R. I., и др.
Опубликовано: (2023) -
Identification of Exploited Unreliable Account Passwords in the Information Infrastructure Using Machine Learning Methods
Автор: Babenko, M. G., и др.
Опубликовано: (2024) -
Development of an Approach to Confidential Learning with Errors in the Design of Neural Networks
Автор: Bezuglova, E. S., и др.
Опубликовано: (2024) -
Development of forecasting theory and methods for developing forecasts in electroenergetics
Автор: Tikhonov, E. E., и др.
Опубликовано: (2021)