Пропуск в контексте

Recognition of Particle Impacts in Acoustic Fixing of Dust Flow Using an Artificial Neural Network

The search for methods to capture and record data on the intensity of the saltation flux of large particles (bouncing over the surface) is an important task, since their movement causes the generation of dust aerosol in arid areas. The proposed approach simulates a prototype device capable of tracin...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Valuev, G. V., Валуев, Г. В., Nazarov, A. S., Назаров, А. С., Grobova, S. K., Гробова, С. К.
Формат: Статья
Язык:English
Опубликовано: Springer Science and Business Media Deutschland GmbH 2024
Темы:
Online-ссылка:https://dspace.ncfu.ru/handle/123456789/29189
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
id ir-123456789-29189
record_format dspace
spelling ir-123456789-291892024-10-31T11:54:56Z Recognition of Particle Impacts in Acoustic Fixing of Dust Flow Using an Artificial Neural Network Valuev, G. V. Валуев, Г. В. Nazarov, A. S. Назаров, А. С. Grobova, S. K. Гробова, С. К. Acoustic methods Sound signal analysis Artificial neural network Filtering Dust particles Saltation Sound fixing The search for methods to capture and record data on the intensity of the saltation flux of large particles (bouncing over the surface) is an important task, since their movement causes the generation of dust aerosol in arid areas. The proposed approach simulates a prototype device capable of tracing the number of particles, in particular in dust storm conditions. The article proposes a method for analyzing audio recordings to detect particle impacts using a neural network approach. The spectrogram of the sound signal is analyzed. The neural network performs the recognition of the intensity and frequency of particle impacts. The accuracy of the neural network on a test sample obtained in natural conditions is 87.27%. 2024-10-31T11:52:56Z 2024-10-31T11:52:56Z 2024 Статья Malinovskaya E., Valuev G., Nazarov A., Grobova S., Maksimenkov L. Recognition of Particle Impacts in Acoustic Fixing of Dust Flow Using an Artificial Neural Network // Lecture Notes in Networks and Systems. - 2024. - 1044 LNNS. - pp. 254 - 261. - DOI: 10.1007/978-3-031-64010-0_23 https://dspace.ncfu.ru/handle/123456789/29189 en Lecture Notes in Networks and Systems application/pdf Springer Science and Business Media Deutschland GmbH
institution СКФУ
collection Репозиторий
language English
topic Acoustic methods
Sound signal analysis
Artificial neural network
Filtering
Dust particles
Saltation
Sound fixing
spellingShingle Acoustic methods
Sound signal analysis
Artificial neural network
Filtering
Dust particles
Saltation
Sound fixing
Valuev, G. V.
Валуев, Г. В.
Nazarov, A. S.
Назаров, А. С.
Grobova, S. K.
Гробова, С. К.
Recognition of Particle Impacts in Acoustic Fixing of Dust Flow Using an Artificial Neural Network
description The search for methods to capture and record data on the intensity of the saltation flux of large particles (bouncing over the surface) is an important task, since their movement causes the generation of dust aerosol in arid areas. The proposed approach simulates a prototype device capable of tracing the number of particles, in particular in dust storm conditions. The article proposes a method for analyzing audio recordings to detect particle impacts using a neural network approach. The spectrogram of the sound signal is analyzed. The neural network performs the recognition of the intensity and frequency of particle impacts. The accuracy of the neural network on a test sample obtained in natural conditions is 87.27%.
format Статья
author Valuev, G. V.
Валуев, Г. В.
Nazarov, A. S.
Назаров, А. С.
Grobova, S. K.
Гробова, С. К.
author_facet Valuev, G. V.
Валуев, Г. В.
Nazarov, A. S.
Назаров, А. С.
Grobova, S. K.
Гробова, С. К.
author_sort Valuev, G. V.
title Recognition of Particle Impacts in Acoustic Fixing of Dust Flow Using an Artificial Neural Network
title_short Recognition of Particle Impacts in Acoustic Fixing of Dust Flow Using an Artificial Neural Network
title_full Recognition of Particle Impacts in Acoustic Fixing of Dust Flow Using an Artificial Neural Network
title_fullStr Recognition of Particle Impacts in Acoustic Fixing of Dust Flow Using an Artificial Neural Network
title_full_unstemmed Recognition of Particle Impacts in Acoustic Fixing of Dust Flow Using an Artificial Neural Network
title_sort recognition of particle impacts in acoustic fixing of dust flow using an artificial neural network
publisher Springer Science and Business Media Deutschland GmbH
publishDate 2024
url https://dspace.ncfu.ru/handle/123456789/29189
work_keys_str_mv AT valuevgv recognitionofparticleimpactsinacousticfixingofdustflowusinganartificialneuralnetwork
AT valuevgv recognitionofparticleimpactsinacousticfixingofdustflowusinganartificialneuralnetwork
AT nazarovas recognitionofparticleimpactsinacousticfixingofdustflowusinganartificialneuralnetwork
AT nazarovas recognitionofparticleimpactsinacousticfixingofdustflowusinganartificialneuralnetwork
AT grobovask recognitionofparticleimpactsinacousticfixingofdustflowusinganartificialneuralnetwork
AT grobovask recognitionofparticleimpactsinacousticfixingofdustflowusinganartificialneuralnetwork
_version_ 1842245713081139200