Comparative Analysis of Fast Matrix Multiplication Methods on Different Datatypes
The main problem of artificial intelligence is increasing productivity and quality of problem solutions. Due to the growing architecture of modern neural networks, one needs to engage advanced mathematical methods. Deep learning models use more hardware resources, which increases the computational c...
Сохранить в:
| Главные авторы: | , , , , , , , |
|---|---|
| Формат: | Статья |
| Язык: | English |
| Опубликовано: |
Springer Science and Business Media Deutschland GmbH
2024
|
| Темы: | |
| Online-ссылка: | https://dspace.ncfu.ru/handle/123456789/29206 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
| id |
ir-123456789-29206 |
|---|---|
| record_format |
dspace |
| spelling |
ir-123456789-292062024-11-05T11:23:41Z Comparative Analysis of Fast Matrix Multiplication Methods on Different Datatypes Abdulsalyamova, A. S. Абдулсалямова, А. Ш. Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Nagornov, N. N. Нагорнов, Н. Н. Strassen method Strassen-Winograd method Comparative analysis Computational complexity Decreasing time consumption Matrix multiplication The main problem of artificial intelligence is increasing productivity and quality of problem solutions. Due to the growing architecture of modern neural networks, one needs to engage advanced mathematical methods. Deep learning models use more hardware resources, which increases the computational complexity. Therefore, it is necessary to apply modifications of machine learning models at a fundamental level using alternative matrix multiplication methods. This article proposes a comparative analysis of the computational complexity of matrix multiplication implemented by the standard Strassen and Strassen-Winograd methods. We consider data time complexity for int32, int64, float32, and float64 data types. In addition, the number of recursions for each matrix size is determined. According to the experimental results, we can conclude that the Strassen-Winograd matrix multiplication method has minimal time costs compared to the Strassen method and standard approaches by 3%–6% and 30%–40%, respectively. It is possible to incorporate such an approach into convolutional, spike, and auto-encoding layers. 2024-11-05T11:22:06Z 2024-11-05T11:22:06Z 2024 Статья Abdulsalyamova A., Abdulkadirov R., Lyakhov P., Nagornov N. Comparative Analysis of Fast Matrix Multiplication Methods on Different Datatypes // Lecture Notes in Networks and Systems. - 2024. - 1044 LNNS. - pp. 432 - 438. - DOI: 10.1007/978-3-031-64010-0_40 https://dspace.ncfu.ru/handle/123456789/29206 en Lecture Notes in Networks and Systems application/pdf Springer Science and Business Media Deutschland GmbH |
| institution |
СКФУ |
| collection |
Репозиторий |
| language |
English |
| topic |
Strassen method Strassen-Winograd method Comparative analysis Computational complexity Decreasing time consumption Matrix multiplication |
| spellingShingle |
Strassen method Strassen-Winograd method Comparative analysis Computational complexity Decreasing time consumption Matrix multiplication Abdulsalyamova, A. S. Абдулсалямова, А. Ш. Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Nagornov, N. N. Нагорнов, Н. Н. Comparative Analysis of Fast Matrix Multiplication Methods on Different Datatypes |
| description |
The main problem of artificial intelligence is increasing productivity and quality of problem solutions. Due to the growing architecture of modern neural networks, one needs to engage advanced mathematical methods. Deep learning models use more hardware resources, which increases the computational complexity. Therefore, it is necessary to apply modifications of machine learning models at a fundamental level using alternative matrix multiplication methods. This article proposes a comparative analysis of the computational complexity of matrix multiplication implemented by the standard Strassen and Strassen-Winograd methods. We consider data time complexity for int32, int64, float32, and float64 data types. In addition, the number of recursions for each matrix size is determined. According to the experimental results, we can conclude that the Strassen-Winograd matrix multiplication method has minimal time costs compared to the Strassen method and standard approaches by 3%–6% and 30%–40%, respectively. It is possible to incorporate such an approach into convolutional, spike, and auto-encoding layers. |
| format |
Статья |
| author |
Abdulsalyamova, A. S. Абдулсалямова, А. Ш. Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Nagornov, N. N. Нагорнов, Н. Н. |
| author_facet |
Abdulsalyamova, A. S. Абдулсалямова, А. Ш. Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Nagornov, N. N. Нагорнов, Н. Н. |
| author_sort |
Abdulsalyamova, A. S. |
| title |
Comparative Analysis of Fast Matrix Multiplication Methods on Different Datatypes |
| title_short |
Comparative Analysis of Fast Matrix Multiplication Methods on Different Datatypes |
| title_full |
Comparative Analysis of Fast Matrix Multiplication Methods on Different Datatypes |
| title_fullStr |
Comparative Analysis of Fast Matrix Multiplication Methods on Different Datatypes |
| title_full_unstemmed |
Comparative Analysis of Fast Matrix Multiplication Methods on Different Datatypes |
| title_sort |
comparative analysis of fast matrix multiplication methods on different datatypes |
| publisher |
Springer Science and Business Media Deutschland GmbH |
| publishDate |
2024 |
| url |
https://dspace.ncfu.ru/handle/123456789/29206 |
| work_keys_str_mv |
AT abdulsalyamovaas comparativeanalysisoffastmatrixmultiplicationmethodsondifferentdatatypes AT abdulsalâmovaaš comparativeanalysisoffastmatrixmultiplicationmethodsondifferentdatatypes AT abdulkadirovri comparativeanalysisoffastmatrixmultiplicationmethodsondifferentdatatypes AT abdulkadirovri comparativeanalysisoffastmatrixmultiplicationmethodsondifferentdatatypes AT lyakhovpa comparativeanalysisoffastmatrixmultiplicationmethodsondifferentdatatypes AT lâhovpa comparativeanalysisoffastmatrixmultiplicationmethodsondifferentdatatypes AT nagornovnn comparativeanalysisoffastmatrixmultiplicationmethodsondifferentdatatypes AT nagornovnn comparativeanalysisoffastmatrixmultiplicationmethodsondifferentdatatypes |
| _version_ |
1842245669469814784 |