Пропуск в контексте

Comparative Analysis of Fast Matrix Multiplication Methods on Different Datatypes

The main problem of artificial intelligence is increasing productivity and quality of problem solutions. Due to the growing architecture of modern neural networks, one needs to engage advanced mathematical methods. Deep learning models use more hardware resources, which increases the computational c...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Abdulsalyamova, A. S., Абдулсалямова, А. Ш., Abdulkadirov, R. I., Абдулкадиров, Р. И., Lyakhov, P. A., Ляхов, П. А., Nagornov, N. N., Нагорнов, Н. Н.
Формат: Статья
Язык:English
Опубликовано: Springer Science and Business Media Deutschland GmbH 2024
Темы:
Online-ссылка:https://dspace.ncfu.ru/handle/123456789/29206
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
id ir-123456789-29206
record_format dspace
spelling ir-123456789-292062024-11-05T11:23:41Z Comparative Analysis of Fast Matrix Multiplication Methods on Different Datatypes Abdulsalyamova, A. S. Абдулсалямова, А. Ш. Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Nagornov, N. N. Нагорнов, Н. Н. Strassen method Strassen-Winograd method Comparative analysis Computational complexity Decreasing time consumption Matrix multiplication The main problem of artificial intelligence is increasing productivity and quality of problem solutions. Due to the growing architecture of modern neural networks, one needs to engage advanced mathematical methods. Deep learning models use more hardware resources, which increases the computational complexity. Therefore, it is necessary to apply modifications of machine learning models at a fundamental level using alternative matrix multiplication methods. This article proposes a comparative analysis of the computational complexity of matrix multiplication implemented by the standard Strassen and Strassen-Winograd methods. We consider data time complexity for int32, int64, float32, and float64 data types. In addition, the number of recursions for each matrix size is determined. According to the experimental results, we can conclude that the Strassen-Winograd matrix multiplication method has minimal time costs compared to the Strassen method and standard approaches by 3%–6% and 30%–40%, respectively. It is possible to incorporate such an approach into convolutional, spike, and auto-encoding layers. 2024-11-05T11:22:06Z 2024-11-05T11:22:06Z 2024 Статья Abdulsalyamova A., Abdulkadirov R., Lyakhov P., Nagornov N. Comparative Analysis of Fast Matrix Multiplication Methods on Different Datatypes // Lecture Notes in Networks and Systems. - 2024. - 1044 LNNS. - pp. 432 - 438. - DOI: 10.1007/978-3-031-64010-0_40 https://dspace.ncfu.ru/handle/123456789/29206 en Lecture Notes in Networks and Systems application/pdf Springer Science and Business Media Deutschland GmbH
institution СКФУ
collection Репозиторий
language English
topic Strassen method
Strassen-Winograd method
Comparative analysis
Computational complexity
Decreasing time consumption
Matrix multiplication
spellingShingle Strassen method
Strassen-Winograd method
Comparative analysis
Computational complexity
Decreasing time consumption
Matrix multiplication
Abdulsalyamova, A. S.
Абдулсалямова, А. Ш.
Abdulkadirov, R. I.
Абдулкадиров, Р. И.
Lyakhov, P. A.
Ляхов, П. А.
Nagornov, N. N.
Нагорнов, Н. Н.
Comparative Analysis of Fast Matrix Multiplication Methods on Different Datatypes
description The main problem of artificial intelligence is increasing productivity and quality of problem solutions. Due to the growing architecture of modern neural networks, one needs to engage advanced mathematical methods. Deep learning models use more hardware resources, which increases the computational complexity. Therefore, it is necessary to apply modifications of machine learning models at a fundamental level using alternative matrix multiplication methods. This article proposes a comparative analysis of the computational complexity of matrix multiplication implemented by the standard Strassen and Strassen-Winograd methods. We consider data time complexity for int32, int64, float32, and float64 data types. In addition, the number of recursions for each matrix size is determined. According to the experimental results, we can conclude that the Strassen-Winograd matrix multiplication method has minimal time costs compared to the Strassen method and standard approaches by 3%–6% and 30%–40%, respectively. It is possible to incorporate such an approach into convolutional, spike, and auto-encoding layers.
format Статья
author Abdulsalyamova, A. S.
Абдулсалямова, А. Ш.
Abdulkadirov, R. I.
Абдулкадиров, Р. И.
Lyakhov, P. A.
Ляхов, П. А.
Nagornov, N. N.
Нагорнов, Н. Н.
author_facet Abdulsalyamova, A. S.
Абдулсалямова, А. Ш.
Abdulkadirov, R. I.
Абдулкадиров, Р. И.
Lyakhov, P. A.
Ляхов, П. А.
Nagornov, N. N.
Нагорнов, Н. Н.
author_sort Abdulsalyamova, A. S.
title Comparative Analysis of Fast Matrix Multiplication Methods on Different Datatypes
title_short Comparative Analysis of Fast Matrix Multiplication Methods on Different Datatypes
title_full Comparative Analysis of Fast Matrix Multiplication Methods on Different Datatypes
title_fullStr Comparative Analysis of Fast Matrix Multiplication Methods on Different Datatypes
title_full_unstemmed Comparative Analysis of Fast Matrix Multiplication Methods on Different Datatypes
title_sort comparative analysis of fast matrix multiplication methods on different datatypes
publisher Springer Science and Business Media Deutschland GmbH
publishDate 2024
url https://dspace.ncfu.ru/handle/123456789/29206
work_keys_str_mv AT abdulsalyamovaas comparativeanalysisoffastmatrixmultiplicationmethodsondifferentdatatypes
AT abdulsalâmovaaš comparativeanalysisoffastmatrixmultiplicationmethodsondifferentdatatypes
AT abdulkadirovri comparativeanalysisoffastmatrixmultiplicationmethodsondifferentdatatypes
AT abdulkadirovri comparativeanalysisoffastmatrixmultiplicationmethodsondifferentdatatypes
AT lyakhovpa comparativeanalysisoffastmatrixmultiplicationmethodsondifferentdatatypes
AT lâhovpa comparativeanalysisoffastmatrixmultiplicationmethodsondifferentdatatypes
AT nagornovnn comparativeanalysisoffastmatrixmultiplicationmethodsondifferentdatatypes
AT nagornovnn comparativeanalysisoffastmatrixmultiplicationmethodsondifferentdatatypes
_version_ 1842245669469814784