Пропуск в контексте

Toward Understanding Uncertainty in Fog-Cloud Computing for Big Data Storage and Processing

Fog computing is currently getting more and more development. But researchers face the challenges of uncertainty, security, and data management in the fog. To solve these problems, re-searchers use various methods. For example, methods of machine learning, orchestration, cryptography, etc. are used....

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Kucherov, N. N., Кучеров, Н. Н., Gladkov, A. V., Гладков, А. В., Vershkov, N. A., Вершков, Н. А., Nazarov, A. S., Назаров, А. С.
Формат: Статья
Язык:English
Опубликовано: Springer Science and Business Media Deutschland GmbH 2024
Темы:
Online-ссылка:https://dspace.ncfu.ru/handle/123456789/29210
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
id ir-123456789-29210
record_format dspace
spelling ir-123456789-292102024-11-08T09:26:01Z Toward Understanding Uncertainty in Fog-Cloud Computing for Big Data Storage and Processing Kucherov, N. N. Кучеров, Н. Н. Gladkov, A. V. Гладков, А. В. Vershkov, N. A. Вершков, Н. А. Nazarov, A. S. Назаров, А. С. Fog computing Modular arithmetic Uncertainty Fog computing is currently getting more and more development. But researchers face the challenges of uncertainty, security, and data management in the fog. To solve these problems, re-searchers use various methods. For example, methods of machine learning, orchestration, cryptography, etc. are used. In this paper, we propose a method for solving the confidentiality problem based on modular arithmetic, secret sharing schemes, and homomorphic ciphers. An overview and nature of the arising uncertainties in fog computing is given. Approaches to its reduction are proposed. 2024-11-08T09:24:55Z 2024-11-08T09:24:55Z 2024 Статья Kucherov N., Gladkov A., Vershkov N., Nazarov A. Toward Understanding Uncertainty in Fog-Cloud Computing for Big Data Storage and Processing // Lecture Notes in Networks and Systems. - 2024. - 1044 LNNS. - pp. 115 - 133. - DOI: 10.1007/978-3-031-64010-0_12 https://dspace.ncfu.ru/handle/123456789/29210 en Lecture Notes in Networks and Systems application/pdf Springer Science and Business Media Deutschland GmbH
institution СКФУ
collection Репозиторий
language English
topic Fog computing
Modular arithmetic
Uncertainty
spellingShingle Fog computing
Modular arithmetic
Uncertainty
Kucherov, N. N.
Кучеров, Н. Н.
Gladkov, A. V.
Гладков, А. В.
Vershkov, N. A.
Вершков, Н. А.
Nazarov, A. S.
Назаров, А. С.
Toward Understanding Uncertainty in Fog-Cloud Computing for Big Data Storage and Processing
description Fog computing is currently getting more and more development. But researchers face the challenges of uncertainty, security, and data management in the fog. To solve these problems, re-searchers use various methods. For example, methods of machine learning, orchestration, cryptography, etc. are used. In this paper, we propose a method for solving the confidentiality problem based on modular arithmetic, secret sharing schemes, and homomorphic ciphers. An overview and nature of the arising uncertainties in fog computing is given. Approaches to its reduction are proposed.
format Статья
author Kucherov, N. N.
Кучеров, Н. Н.
Gladkov, A. V.
Гладков, А. В.
Vershkov, N. A.
Вершков, Н. А.
Nazarov, A. S.
Назаров, А. С.
author_facet Kucherov, N. N.
Кучеров, Н. Н.
Gladkov, A. V.
Гладков, А. В.
Vershkov, N. A.
Вершков, Н. А.
Nazarov, A. S.
Назаров, А. С.
author_sort Kucherov, N. N.
title Toward Understanding Uncertainty in Fog-Cloud Computing for Big Data Storage and Processing
title_short Toward Understanding Uncertainty in Fog-Cloud Computing for Big Data Storage and Processing
title_full Toward Understanding Uncertainty in Fog-Cloud Computing for Big Data Storage and Processing
title_fullStr Toward Understanding Uncertainty in Fog-Cloud Computing for Big Data Storage and Processing
title_full_unstemmed Toward Understanding Uncertainty in Fog-Cloud Computing for Big Data Storage and Processing
title_sort toward understanding uncertainty in fog-cloud computing for big data storage and processing
publisher Springer Science and Business Media Deutschland GmbH
publishDate 2024
url https://dspace.ncfu.ru/handle/123456789/29210
work_keys_str_mv AT kucherovnn towardunderstandinguncertaintyinfogcloudcomputingforbigdatastorageandprocessing
AT kučerovnn towardunderstandinguncertaintyinfogcloudcomputingforbigdatastorageandprocessing
AT gladkovav towardunderstandinguncertaintyinfogcloudcomputingforbigdatastorageandprocessing
AT gladkovav towardunderstandinguncertaintyinfogcloudcomputingforbigdatastorageandprocessing
AT vershkovna towardunderstandinguncertaintyinfogcloudcomputingforbigdatastorageandprocessing
AT verškovna towardunderstandinguncertaintyinfogcloudcomputingforbigdatastorageandprocessing
AT nazarovas towardunderstandinguncertaintyinfogcloudcomputingforbigdatastorageandprocessing
AT nazarovas towardunderstandinguncertaintyinfogcloudcomputingforbigdatastorageandprocessing
_version_ 1842245523674759168