A novel explicit fast numerical scheme for the Cauchy problem for integro-differential equations with a difference kernel and its application
The present study focuses on designing a second-order novel explicit fast numerical scheme for the Cauchy problem incorporating memory associated with an evolutionary equation, where the integral term's kernel is a discrete difference operator. The Cauchy problem under consideration is related...
Сохранить в:
| Главные авторы: | Alikhanov, A. A., Алиханов, А. А., Shahbazi Asl, M., Шахбазиасль, М. |
|---|---|
| Формат: | Статья |
| Язык: | English |
| Опубликовано: |
Elsevier Ltd
2024
|
| Темы: | |
| Online-ссылка: | https://dspace.ncfu.ru/handle/123456789/29235 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Схожие документы
-
ERROR ANALYSIS OF FRACTIONAL COLLOCATION METHODS FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITH NONCOMPACT OPERATORS
Автор: Alikhanov, A. A., и др.
Опубликовано: (2025) -
Approximate solution of the Cauchy problem for a first-order integrodifferential equation with solution derivative memory
Автор: Vabishchevich, P. N., и др.
Опубликовано: (2023) -
A high-order compact difference scheme for the multi-term time-fractional Sobolev-type convection-diffusion equation
Автор: Alikhanov, A. A., и др.
Опубликовано: (2025) -
Computational study of critical conditions of a mast with flexible supports
Автор: Kulterbaev, K. P., и др.
Опубликовано: (2024) -
Splitting Schemes for Evolution Equations with a Factorized Operator
Автор: Vabishchevich, P. N., и др.
Опубликовано: (2024)