Enhancing Cloud Security through Efficient Polynomial Approximations for Homomorphic Evaluation of Neural Network Activation Functions
Current security cloud practices can successfully protect stored data and data in transit, but they do not keep the same protection during data processing. The data value extraction requires decryption, creating critical exposure points. As a result, privacy-preserving techniques are emerging as a c...
Сохранить в:
| Главные авторы: | Babenko, M. G., Бабенко, М. Г. |
|---|---|
| Формат: | Статья |
| Язык: | English |
| Опубликовано: |
Institute of Electrical and Electronics Engineers Inc.
2024
|
| Темы: | |
| Online-ссылка: | https://dspace.ncfu.ru/handle/123456789/29245 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Схожие документы
-
High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks
Автор: Lapina, M. A., и др.
Опубликовано: (2024) -
An Approximate Algorithm for Determining the Sign Function of a Number Using Neural Network Methods
Автор: Shiriaev, E. M., и др.
Опубликовано: (2024) -
A survey on multi-cloud storage security: threats and countermeasures
Автор: Bezuglova, E. S., и др.
Опубликовано: (2023) -
Modification and Adaptation of Methods and Algorithms of the Active Security Concept for Fog Systems
Автор: Shiriaev, E. M., и др.
Опубликовано: (2024) -
Nonlinear approximation of functions based on nonnegative least squares solver
Автор: Vabishchevich, P. N., и др.
Опубликовано: (2023)