Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
In this paper we propose the fractional gradient descent for increasing the training and work of modern neural networks. This optimizer searches the global minimum of the loss function considering the fractional gradient directions achieved by Riemann-Liouville, Caputo, and Grunwald-Letnikov derivat...
Сохранить в:
| Главные авторы: | , , , , , , , |
|---|---|
| 格式: | Статья |
| 语言: | English |
| 出版: |
Institute of Electrical and Electronics Engineers Inc.
2024
|
| 主题: | |
| 在线阅读: | https://dspace.ncfu.ru/handle/123456789/29336 |
| 标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
| id |
ir-123456789-29336 |
|---|---|
| record_format |
dspace |
| spelling |
ir-123456789-293362024-12-06T13:27:52Z Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Baboshina, V. A. Бабошина, В. А. Nagornov, N. N. Нагорнов, Н. Н. Caputo Stochastic gradient descent Convolutional neural networks Fractional derivatives of Riemann-Liouville Grunwald-Letnikov Multilayer perceptron Optimization algorithms In this paper we propose the fractional gradient descent for increasing the training and work of modern neural networks. This optimizer searches the global minimum of the loss function considering the fractional gradient directions achieved by Riemann-Liouville, Caputo, and Grunwald-Letnikov derivatives. The adjusting of size and direction of the fractional gradient, supported by momentum and Nesterov condition, let the proposed optimizer descend into the global minimum of loss functions of neural networks. Utilizing the proposed optimization algorithm in a linear neural network and a visual transformer lets us attain higher accuracy, precision, recall, Macro F1 score by 1.8-4 percentage points than known analogs than state-of-the-art methods in solving pattern recognition problems on images from MNIST and CIFAR10 datasets. Further research of fractional calculus in modern neural network methodology can improve the quality of solving various challenges such as pattern recognition, time series forecasting, moving object detection, and data generation. 2024-12-06T13:26:29Z 2024-12-06T13:26:29Z 2024 Статья Abdulkadirov, R.I., Lyakhov, P.A., Baboshina, V.A., Nagornov, N.N. Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent // IEEE Access. - 2024. - 12. - pp. 168428-168444. - DOI: 10.1109/ACCESS.2024.3491614 https://dspace.ncfu.ru/handle/123456789/29336 en IEEE Access application/pdf application/pdf Institute of Electrical and Electronics Engineers Inc. |
| institution |
СКФУ |
| collection |
Репозиторий |
| language |
English |
| topic |
Caputo Stochastic gradient descent Convolutional neural networks Fractional derivatives of Riemann-Liouville Grunwald-Letnikov Multilayer perceptron Optimization algorithms |
| spellingShingle |
Caputo Stochastic gradient descent Convolutional neural networks Fractional derivatives of Riemann-Liouville Grunwald-Letnikov Multilayer perceptron Optimization algorithms Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Baboshina, V. A. Бабошина, В. А. Nagornov, N. N. Нагорнов, Н. Н. Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent |
| description |
In this paper we propose the fractional gradient descent for increasing the training and work of modern neural networks. This optimizer searches the global minimum of the loss function considering the fractional gradient directions achieved by Riemann-Liouville, Caputo, and Grunwald-Letnikov derivatives. The adjusting of size and direction of the fractional gradient, supported by momentum and Nesterov condition, let the proposed optimizer descend into the global minimum of loss functions of neural networks. Utilizing the proposed optimization algorithm in a linear neural network and a visual transformer lets us attain higher accuracy, precision, recall, Macro F1 score by 1.8-4 percentage points than known analogs than state-of-the-art methods in solving pattern recognition problems on images from MNIST and CIFAR10 datasets. Further research of fractional calculus in modern neural network methodology can improve the quality of solving various challenges such as pattern recognition, time series forecasting, moving object detection, and data generation. |
| format |
Статья |
| author |
Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Baboshina, V. A. Бабошина, В. А. Nagornov, N. N. Нагорнов, Н. Н. |
| author_facet |
Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Baboshina, V. A. Бабошина, В. А. Nagornov, N. N. Нагорнов, Н. Н. |
| author_sort |
Abdulkadirov, R. I. |
| title |
Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent |
| title_short |
Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent |
| title_full |
Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent |
| title_fullStr |
Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent |
| title_full_unstemmed |
Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent |
| title_sort |
improving the accuracy of neural network pattern recognition by fractional gradient descent |
| publisher |
Institute of Electrical and Electronics Engineers Inc. |
| publishDate |
2024 |
| url |
https://dspace.ncfu.ru/handle/123456789/29336 |
| work_keys_str_mv |
AT abdulkadirovri improvingtheaccuracyofneuralnetworkpatternrecognitionbyfractionalgradientdescent AT abdulkadirovri improvingtheaccuracyofneuralnetworkpatternrecognitionbyfractionalgradientdescent AT lyakhovpa improvingtheaccuracyofneuralnetworkpatternrecognitionbyfractionalgradientdescent AT lâhovpa improvingtheaccuracyofneuralnetworkpatternrecognitionbyfractionalgradientdescent AT baboshinava improvingtheaccuracyofneuralnetworkpatternrecognitionbyfractionalgradientdescent AT babošinava improvingtheaccuracyofneuralnetworkpatternrecognitionbyfractionalgradientdescent AT nagornovnn improvingtheaccuracyofneuralnetworkpatternrecognitionbyfractionalgradientdescent AT nagornovnn improvingtheaccuracyofneuralnetworkpatternrecognitionbyfractionalgradientdescent |
| _version_ |
1842245855413796864 |