Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
In this paper we propose the fractional gradient descent for increasing the training and work of modern neural networks. This optimizer searches the global minimum of the loss function considering the fractional gradient directions achieved by Riemann-Liouville, Caputo, and Grunwald-Letnikov derivat...
Enregistré dans:
| Auteurs principaux: | Abdulkadirov, R. I., Абдулкадиров, Р. И., Lyakhov, P. A., Ляхов, П. А., Baboshina, V. A., Бабошина, В. А., Nagornov, N. N., Нагорнов, Н. Н. |
|---|---|
| Format: | Статья |
| Langue: | English |
| Publié: |
Institute of Electrical and Electronics Engineers Inc.
2024
|
| Sujets: | |
| Accès en ligne: | https://dspace.ncfu.ru/handle/123456789/29336 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Physics-informed neural network model using natural gradient descent with Dirichlet distribution
par: Abdulkadirov, R. I., et autres
Publié: (2025) -
A new approach to training neural networks using natural gradient descent with momentum based on Dirichlet distributions
par: Abdulkadirov, R. I., et autres
Publié: (2023) -
Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms
par: Lyakhov, P. A., et autres
Publié: (2025) -
Stochastic Orthogonal Code Generator for a Perspective Cognitive Radio System
par: Zhuk, A. P., et autres
Publié: (2024) -
A Descent into the Maelström
par: Edgar A. P.
Publié: (2013)