Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
In this paper we propose the fractional gradient descent for increasing the training and work of modern neural networks. This optimizer searches the global minimum of the loss function considering the fractional gradient directions achieved by Riemann-Liouville, Caputo, and Grunwald-Letnikov derivat...
Guardado en:
| Autores principales: | Abdulkadirov, R. I., Абдулкадиров, Р. И., Lyakhov, P. A., Ляхов, П. А., Baboshina, V. A., Бабошина, В. А., Nagornov, N. N., Нагорнов, Н. Н. |
|---|---|
| Formato: | Статья |
| Lenguaje: | English |
| Publicado: |
Institute of Electrical and Electronics Engineers Inc.
2024
|
| Materias: | |
| Acceso en línea: | https://dspace.ncfu.ru/handle/123456789/29336 |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Physics-informed neural network model using natural gradient descent with Dirichlet distribution
por: Abdulkadirov, R. I., et al.
Publicado: (2025) -
A new approach to training neural networks using natural gradient descent with momentum based on Dirichlet distributions
por: Abdulkadirov, R. I., et al.
Publicado: (2023) -
Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms
por: Lyakhov, P. A., et al.
Publicado: (2025) -
Stochastic Orthogonal Code Generator for a Perspective Cognitive Radio System
por: Zhuk, A. P., et al.
Publicado: (2024) -
A Descent into the Maelström
por: Edgar A. P.
Publicado: (2013)