Aller au contenu

High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks

Due to legal restrictions or restrictions related to companies' internal information policies, businesses often do not trust sensitive information to public cloud providers. One of the mechanisms to ensure the security of sensitive data in clouds is homomorphic encryption. Privacy-preserving ne...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Lapina, M. A., Лапина, М. А., Shiriaev, E. M., Ширяев, Е. М., Babenko, M. G., Бабенко, М. Г.
Format: Статья
Langue:English
Publié: Pleiades Publishing 2024
Sujets:
Accès en ligne:https://dspace.ncfu.ru/handle/123456789/29339
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Due to legal restrictions or restrictions related to companies' internal information policies, businesses often do not trust sensitive information to public cloud providers. One of the mechanisms to ensure the security of sensitive data in clouds is homomorphic encryption. Privacy-preserving neural networks are used to design solutions that utilize neural networks under these conditions. They exploit the homomorphic encryption mechanism, thus enabling the security of commercial information in the cloud. The main deterrent to the use of privacy-preserving neural networks is the large computational and spatial complexity of the scalar multiplication algorithm, which is the basic algorithm for computing mathematical convolution. In this paper, we propose a scalar multiplication algorithm that reduces the spatial complexity from quadratic to linear, and reduces the computation time of scalar multiplication by a factor of 1.38.