High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks
Due to legal restrictions or restrictions related to companies' internal information policies, businesses often do not trust sensitive information to public cloud providers. One of the mechanisms to ensure the security of sensitive data in clouds is homomorphic encryption. Privacy-preserving ne...
Guardat en:
| Autors principals: | Lapina, M. A., Лапина, М. А., Shiriaev, E. M., Ширяев, Е. М., Babenko, M. G., Бабенко, М. Г. |
|---|---|
| Format: | Статья |
| Idioma: | English |
| Publicat: |
Pleiades Publishing
2024
|
| Matèries: | |
| Accés en línia: | https://dspace.ncfu.ru/handle/123456789/29339 |
| Etiquetes: |
Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
Ítems similars
-
Enhancing Cloud Security through Efficient Polynomial Approximations for Homomorphic Evaluation of Neural Network Activation Functions
per: Babenko, M. G., et al.
Publicat: (2024) -
An Approximate Algorithm for Determining the Sign Function of a Number Using Neural Network Methods
per: Shiriaev, E. M., et al.
Publicat: (2024) -
Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
per: Abdulkadirov, R. I., et al.
Publicat: (2024) -
Neural network technologies in economics study aid
per: Kovalenko, A. V. -
Hardware and software implementation of neural network control of power systems based on the system of residual classes
per: Tikhonov, E. E., et al.
Publicat: (2020)