High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks
Due to legal restrictions or restrictions related to companies' internal information policies, businesses often do not trust sensitive information to public cloud providers. One of the mechanisms to ensure the security of sensitive data in clouds is homomorphic encryption. Privacy-preserving ne...
Gorde:
| Egile Nagusiak: | Lapina, M. A., Лапина, М. А., Shiriaev, E. M., Ширяев, Е. М., Babenko, M. G., Бабенко, М. Г. |
|---|---|
| Formatua: | Статья |
| Hizkuntza: | English |
| Argitaratua: |
Pleiades Publishing
2024
|
| Gaiak: | |
| Sarrera elektronikoa: | https://dspace.ncfu.ru/handle/123456789/29339 |
| Etiketak: |
Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
|
Antzeko izenburuak
-
Enhancing Cloud Security through Efficient Polynomial Approximations for Homomorphic Evaluation of Neural Network Activation Functions
nork: Babenko, M. G., et al.
Argitaratua: (2024) -
An Approximate Algorithm for Determining the Sign Function of a Number Using Neural Network Methods
nork: Shiriaev, E. M., et al.
Argitaratua: (2024) -
Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
nork: Abdulkadirov, R. I., et al.
Argitaratua: (2024) -
Neural network technologies in economics study aid
nork: Kovalenko, A. V. -
Hardware and software implementation of neural network control of power systems based on the system of residual classes
nork: Tikhonov, E. E., et al.
Argitaratua: (2020)