High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks
Due to legal restrictions or restrictions related to companies' internal information policies, businesses often do not trust sensitive information to public cloud providers. One of the mechanisms to ensure the security of sensitive data in clouds is homomorphic encryption. Privacy-preserving ne...
Tallennettuna:
| Päätekijät: | Lapina, M. A., Лапина, М. А., Shiriaev, E. M., Ширяев, Е. М., Babenko, M. G., Бабенко, М. Г. |
|---|---|
| Aineistotyyppi: | Статья |
| Kieli: | English |
| Julkaistu: |
Pleiades Publishing
2024
|
| Aiheet: | |
| Linkit: | https://dspace.ncfu.ru/handle/123456789/29339 |
| Tagit: |
Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!
|
Samankaltaisia teoksia
-
Enhancing Cloud Security through Efficient Polynomial Approximations for Homomorphic Evaluation of Neural Network Activation Functions
Tekijä: Babenko, M. G., et al.
Julkaistu: (2024) -
An Approximate Algorithm for Determining the Sign Function of a Number Using Neural Network Methods
Tekijä: Shiriaev, E. M., et al.
Julkaistu: (2024) -
Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
Tekijä: Abdulkadirov, R. I., et al.
Julkaistu: (2024) -
Neural network technologies in economics study aid
Tekijä: Kovalenko, A. V. -
Hardware and software implementation of neural network control of power systems based on the system of residual classes
Tekijä: Tikhonov, E. E., et al.
Julkaistu: (2020)