High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks
Due to legal restrictions or restrictions related to companies' internal information policies, businesses often do not trust sensitive information to public cloud providers. One of the mechanisms to ensure the security of sensitive data in clouds is homomorphic encryption. Privacy-preserving ne...
Enregistré dans:
| Auteurs principaux: | Lapina, M. A., Лапина, М. А., Shiriaev, E. M., Ширяев, Е. М., Babenko, M. G., Бабенко, М. Г. |
|---|---|
| Format: | Статья |
| Langue: | English |
| Publié: |
Pleiades Publishing
2024
|
| Sujets: | |
| Accès en ligne: | https://dspace.ncfu.ru/handle/123456789/29339 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Enhancing Cloud Security through Efficient Polynomial Approximations for Homomorphic Evaluation of Neural Network Activation Functions
par: Babenko, M. G., et autres
Publié: (2024) -
An Approximate Algorithm for Determining the Sign Function of a Number Using Neural Network Methods
par: Shiriaev, E. M., et autres
Publié: (2024) -
Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
par: Abdulkadirov, R. I., et autres
Publié: (2024) -
Neural network technologies in economics study aid
par: Kovalenko, A. V. -
Hardware and software implementation of neural network control of power systems based on the system of residual classes
par: Tikhonov, E. E., et autres
Publié: (2020)