An Efficient Compressive Data Collection Scheme for Wireless Sensor Networks
The Compressive Data Collection (CDC) scheme is an efficient data-acquiring method that uses compressive sensing to decrease the bulk of data transmitted. Most existing schemes are modeled as Non-Uniform Sparse Random Projection (NSRP), and an NSRP-based estimator is used. These models cannot deal w...
Сохранить в:
| Главные авторы: | , |
|---|---|
| Формат: | Статья |
| Язык: | English |
| Опубликовано: |
Springer Science and Business Media Deutschland GmbH
2024
|
| Темы: | |
| Online-ссылка: | https://dspace.ncfu.ru/handle/123456789/29357 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
| Краткое описание: | The Compressive Data Collection (CDC) scheme is an efficient data-acquiring method that uses compressive sensing to decrease the bulk of data transmitted. Most existing schemes are modeled as Non-Uniform Sparse Random Projection (NSRP), and an NSRP-based estimator is used. These models cannot deal with anomaly readings that deviate from their standards and norms. Therefore, we provide a new CDC strategy in this study that uses an opportunistic estimator and routing. Initially, neighbor nodes are identified using the covariance function following the Gaussian process regression, and the data transfer to the neighbor node is done using the compressive sensing technique. Compressed data are then projected by using conventional random projection. Finally, the sample required to retrieve data is estimated using margin-free and maximum likelihood estimators. Results show that the sample needed to retrieve the data is less in the proposed scheme. |
|---|