An Efficient Compressive Data Collection Scheme for Wireless Sensor Networks
The Compressive Data Collection (CDC) scheme is an efficient data-acquiring method that uses compressive sensing to decrease the bulk of data transmitted. Most existing schemes are modeled as Non-Uniform Sparse Random Projection (NSRP), and an NSRP-based estimator is used. These models cannot deal w...
Сохранить в:
| Главные авторы: | , |
|---|---|
| Формат: | Статья |
| Язык: | English |
| Опубликовано: |
Springer Science and Business Media Deutschland GmbH
2024
|
| Темы: | |
| Online-ссылка: | https://dspace.ncfu.ru/handle/123456789/29357 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
| id |
ir-123456789-29357 |
|---|---|
| record_format |
dspace |
| spelling |
ir-123456789-293572024-12-11T08:45:24Z An Efficient Compressive Data Collection Scheme for Wireless Sensor Networks Lapina, M. A. Лапина, М. А. Compressive data collection Wireless sensor network Maximum likelihood estimator Margin-free estimator Gaussian regression Covariance function The Compressive Data Collection (CDC) scheme is an efficient data-acquiring method that uses compressive sensing to decrease the bulk of data transmitted. Most existing schemes are modeled as Non-Uniform Sparse Random Projection (NSRP), and an NSRP-based estimator is used. These models cannot deal with anomaly readings that deviate from their standards and norms. Therefore, we provide a new CDC strategy in this study that uses an opportunistic estimator and routing. Initially, neighbor nodes are identified using the covariance function following the Gaussian process regression, and the data transfer to the neighbor node is done using the compressive sensing technique. Compressed data are then projected by using conventional random projection. Finally, the sample required to retrieve data is estimated using margin-free and maximum likelihood estimators. Results show that the sample needed to retrieve the data is less in the proposed scheme. 2024-12-11T08:44:40Z 2024-12-11T08:44:40Z 2024 Статья Mary Anita, E.A., Jenefa, J., Vinodha, D., Lapina, M. An Efficient Compressive Data Collection Scheme for Wireless Sensor Networks // Lecture Notes in Networks and Systems. - 2024. - 1207 LNNS. - pp. 31-47. - DOI: 10.1007/978-3-031-77229-0_5 https://dspace.ncfu.ru/handle/123456789/29357 en Lecture Notes in Networks and Systems application/pdf Springer Science and Business Media Deutschland GmbH |
| institution |
СКФУ |
| collection |
Репозиторий |
| language |
English |
| topic |
Compressive data collection Wireless sensor network Maximum likelihood estimator Margin-free estimator Gaussian regression Covariance function |
| spellingShingle |
Compressive data collection Wireless sensor network Maximum likelihood estimator Margin-free estimator Gaussian regression Covariance function Lapina, M. A. Лапина, М. А. An Efficient Compressive Data Collection Scheme for Wireless Sensor Networks |
| description |
The Compressive Data Collection (CDC) scheme is an efficient data-acquiring method that uses compressive sensing to decrease the bulk of data transmitted. Most existing schemes are modeled as Non-Uniform Sparse Random Projection (NSRP), and an NSRP-based estimator is used. These models cannot deal with anomaly readings that deviate from their standards and norms. Therefore, we provide a new CDC strategy in this study that uses an opportunistic estimator and routing. Initially, neighbor nodes are identified using the covariance function following the Gaussian process regression, and the data transfer to the neighbor node is done using the compressive sensing technique. Compressed data are then projected by using conventional random projection. Finally, the sample required to retrieve data is estimated using margin-free and maximum likelihood estimators. Results show that the sample needed to retrieve the data is less in the proposed scheme. |
| format |
Статья |
| author |
Lapina, M. A. Лапина, М. А. |
| author_facet |
Lapina, M. A. Лапина, М. А. |
| author_sort |
Lapina, M. A. |
| title |
An Efficient Compressive Data Collection Scheme for Wireless Sensor Networks |
| title_short |
An Efficient Compressive Data Collection Scheme for Wireless Sensor Networks |
| title_full |
An Efficient Compressive Data Collection Scheme for Wireless Sensor Networks |
| title_fullStr |
An Efficient Compressive Data Collection Scheme for Wireless Sensor Networks |
| title_full_unstemmed |
An Efficient Compressive Data Collection Scheme for Wireless Sensor Networks |
| title_sort |
efficient compressive data collection scheme for wireless sensor networks |
| publisher |
Springer Science and Business Media Deutschland GmbH |
| publishDate |
2024 |
| url |
https://dspace.ncfu.ru/handle/123456789/29357 |
| work_keys_str_mv |
AT lapinama anefficientcompressivedatacollectionschemeforwirelesssensornetworks AT lapinama anefficientcompressivedatacollectionschemeforwirelesssensornetworks AT lapinama efficientcompressivedatacollectionschemeforwirelesssensornetworks AT lapinama efficientcompressivedatacollectionschemeforwirelesssensornetworks |
| _version_ |
1842245527447535616 |