An Efficient Implementation of the Montgomery Algorithm Using the Akushsky Core Function
This paper examines the practical implementation of the Montgomery algorithm in asymmetric cryptosystems using the Residue Number System. Residue Number System enables concurrent computations of additions and multiplications across multiple channels, eliminating the need for bit carrying between the...
Guardado en:
| Autores principales: | Lutsenko, V. V., Луценко, В. В., Bezuglova, E. S., Безуглова, Е. С. |
|---|---|
| Formato: | Статья |
| Lenguaje: | English |
| Publicado: |
Springer Science and Business Media Deutschland GmbH
2024
|
| Materias: | |
| Acceso en línea: | https://dspace.ncfu.ru/handle/123456789/29362 |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Construction of Akushsky Core Functions Without Critical Cores
por: Lutsenko, V. V., et al.
Publicado: (2024) -
High-Speed Parity Number Detection Algorithm in RNS Based on Akushsky Core Function
por: Lutsenko, V. V., et al.
Publicado: (2025) -
Research and Modification of Montgomery Multiplication Algorithm
por: Lapina, M. A., et al.
Publicado: (2024) -
Investigation of Neural Network Methods for Error Detection and Correction in the Residue Number System
por: Lutsenko, V. V., et al.
Publicado: (2024) -
Modeling of parallel data encryption algorithms
por: Kocherov, Y. N., et al.
Publicado: (2020)