Multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data
Today, skin cancer is one of the leading causes of death in the world. Diagnosing skin cancer early is critical to increasing potential survival. Therefore, it is relevant to develop high-precision intelligent auxiliary diagnostic systems for detecting skin cancer in the early stages. Ensemble learn...
Сохранить в:
| Главные авторы: | , , , |
|---|---|
| Формат: | Статья |
| Язык: | Russian |
| Опубликовано: |
Saint Petersburg State University
2024
|
| Темы: | |
| Online-ссылка: | https://dspace.ncfu.ru/handle/123456789/29404 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
| id |
ir-123456789-29404 |
|---|---|
| record_format |
dspace |
| spelling |
ir-123456789-294042024-12-13T11:51:46Z Multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data Мультимодальная ансамблевая нейросетевая система обнаружения рака кожи на основе анализа гетерогенных дерматологических данных Lyakhova, U. A. Ляхова, У. А. Lyakhov, P. A. Ляхов, П. А. Dermatological images Skin cancer Ensemble neural network Machine learning Heterogeneous data Melanoma Multimodal neural network Pigmented skin lesions Today, skin cancer is one of the leading causes of death in the world. Diagnosing skin cancer early is critical to increasing potential survival. Therefore, it is relevant to develop high-precision intelligent auxiliary diagnostic systems for detecting skin cancer in the early stages. Ensemble learning is one of the current and promising methods for increasing the accuracy of intelligent classification systems by reducing the dispersion and variability of predictions of individual components of the overall system. The work proposes an ensemble intelligent system for analyzing heterogeneous dermatological data based on multimodal neural networks. The accuracy of the developed ensemble system was 85.92 %, which is 1.85 percentage points higher than the average accuracy of individual multimodal architectures for classifying heterogeneous dermatological data. The developed system can be used as a high-precision auxiliary diagnostic tool to help make a medical decision, which will increase the chance of early detection of pigmented oncological pathologies. 2024-12-13T11:50:41Z 2024-12-13T11:50:41Z 2024 Статья Lyakhova U.A., Lyakhov P.A. Multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data // Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya. - 2024. - 20 (2). - pp. 231 - 243. - DOI: 10.21638/spbu10.2024.208 https://dspace.ncfu.ru/handle/123456789/29404 ru Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya application/pdf application/pdf Saint Petersburg State University |
| institution |
СКФУ |
| collection |
Репозиторий |
| language |
Russian |
| topic |
Dermatological images Skin cancer Ensemble neural network Machine learning Heterogeneous data Melanoma Multimodal neural network Pigmented skin lesions |
| spellingShingle |
Dermatological images Skin cancer Ensemble neural network Machine learning Heterogeneous data Melanoma Multimodal neural network Pigmented skin lesions Lyakhova, U. A. Ляхова, У. А. Lyakhov, P. A. Ляхов, П. А. Multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data |
| description |
Today, skin cancer is one of the leading causes of death in the world. Diagnosing skin cancer early is critical to increasing potential survival. Therefore, it is relevant to develop high-precision intelligent auxiliary diagnostic systems for detecting skin cancer in the early stages. Ensemble learning is one of the current and promising methods for increasing the accuracy of intelligent classification systems by reducing the dispersion and variability of predictions of individual components of the overall system. The work proposes an ensemble intelligent system for analyzing heterogeneous dermatological data based on multimodal neural networks. The accuracy of the developed ensemble system was 85.92 %, which is 1.85 percentage points higher than the average accuracy of individual multimodal architectures for classifying heterogeneous dermatological data. The developed system can be used as a high-precision auxiliary diagnostic tool to help make a medical decision, which will increase the chance of early detection of pigmented oncological pathologies. |
| format |
Статья |
| author |
Lyakhova, U. A. Ляхова, У. А. Lyakhov, P. A. Ляхов, П. А. |
| author_facet |
Lyakhova, U. A. Ляхова, У. А. Lyakhov, P. A. Ляхов, П. А. |
| author_sort |
Lyakhova, U. A. |
| title |
Multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data |
| title_short |
Multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data |
| title_full |
Multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data |
| title_fullStr |
Multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data |
| title_full_unstemmed |
Multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data |
| title_sort |
multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data |
| publisher |
Saint Petersburg State University |
| publishDate |
2024 |
| url |
https://dspace.ncfu.ru/handle/123456789/29404 |
| work_keys_str_mv |
AT lyakhovaua multimodalensembleneuralnetworksystemforskincancerdetectiononheterogeneousdermatologicaldata AT lâhovaua multimodalensembleneuralnetworksystemforskincancerdetectiononheterogeneousdermatologicaldata AT lyakhovpa multimodalensembleneuralnetworksystemforskincancerdetectiononheterogeneousdermatologicaldata AT lâhovpa multimodalensembleneuralnetworksystemforskincancerdetectiononheterogeneousdermatologicaldata AT lyakhovaua mulʹtimodalʹnaâansamblevaânejrosetevaâsistemaobnaruženiârakakožinaosnoveanalizageterogennyhdermatologičeskihdannyh AT lâhovaua mulʹtimodalʹnaâansamblevaânejrosetevaâsistemaobnaruženiârakakožinaosnoveanalizageterogennyhdermatologičeskihdannyh AT lyakhovpa mulʹtimodalʹnaâansamblevaânejrosetevaâsistemaobnaruženiârakakožinaosnoveanalizageterogennyhdermatologičeskihdannyh AT lâhovpa mulʹtimodalʹnaâansamblevaânejrosetevaâsistemaobnaruženiârakakožinaosnoveanalizageterogennyhdermatologičeskihdannyh |
| _version_ |
1842245379371827200 |