Пропуск в контексте

Multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data

Today, skin cancer is one of the leading causes of death in the world. Diagnosing skin cancer early is critical to increasing potential survival. Therefore, it is relevant to develop high-precision intelligent auxiliary diagnostic systems for detecting skin cancer in the early stages. Ensemble learn...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Lyakhova, U. A., Ляхова, У. А., Lyakhov, P. A., Ляхов, П. А.
Формат: Статья
Язык:Russian
Опубликовано: Saint Petersburg State University 2024
Темы:
Online-ссылка:https://dspace.ncfu.ru/handle/123456789/29404
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
id ir-123456789-29404
record_format dspace
spelling ir-123456789-294042024-12-13T11:51:46Z Multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data Мультимодальная ансамблевая нейросетевая система обнаружения рака кожи на основе анализа гетерогенных дерматологических данных Lyakhova, U. A. Ляхова, У. А. Lyakhov, P. A. Ляхов, П. А. Dermatological images Skin cancer Ensemble neural network Machine learning Heterogeneous data Melanoma Multimodal neural network Pigmented skin lesions Today, skin cancer is one of the leading causes of death in the world. Diagnosing skin cancer early is critical to increasing potential survival. Therefore, it is relevant to develop high-precision intelligent auxiliary diagnostic systems for detecting skin cancer in the early stages. Ensemble learning is one of the current and promising methods for increasing the accuracy of intelligent classification systems by reducing the dispersion and variability of predictions of individual components of the overall system. The work proposes an ensemble intelligent system for analyzing heterogeneous dermatological data based on multimodal neural networks. The accuracy of the developed ensemble system was 85.92 %, which is 1.85 percentage points higher than the average accuracy of individual multimodal architectures for classifying heterogeneous dermatological data. The developed system can be used as a high-precision auxiliary diagnostic tool to help make a medical decision, which will increase the chance of early detection of pigmented oncological pathologies. 2024-12-13T11:50:41Z 2024-12-13T11:50:41Z 2024 Статья Lyakhova U.A., Lyakhov P.A. Multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data // Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya. - 2024. - 20 (2). - pp. 231 - 243. - DOI: 10.21638/spbu10.2024.208 https://dspace.ncfu.ru/handle/123456789/29404 ru Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya application/pdf application/pdf Saint Petersburg State University
institution СКФУ
collection Репозиторий
language Russian
topic Dermatological images
Skin cancer
Ensemble neural network
Machine learning
Heterogeneous data
Melanoma
Multimodal neural network
Pigmented skin lesions
spellingShingle Dermatological images
Skin cancer
Ensemble neural network
Machine learning
Heterogeneous data
Melanoma
Multimodal neural network
Pigmented skin lesions
Lyakhova, U. A.
Ляхова, У. А.
Lyakhov, P. A.
Ляхов, П. А.
Multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data
description Today, skin cancer is one of the leading causes of death in the world. Diagnosing skin cancer early is critical to increasing potential survival. Therefore, it is relevant to develop high-precision intelligent auxiliary diagnostic systems for detecting skin cancer in the early stages. Ensemble learning is one of the current and promising methods for increasing the accuracy of intelligent classification systems by reducing the dispersion and variability of predictions of individual components of the overall system. The work proposes an ensemble intelligent system for analyzing heterogeneous dermatological data based on multimodal neural networks. The accuracy of the developed ensemble system was 85.92 %, which is 1.85 percentage points higher than the average accuracy of individual multimodal architectures for classifying heterogeneous dermatological data. The developed system can be used as a high-precision auxiliary diagnostic tool to help make a medical decision, which will increase the chance of early detection of pigmented oncological pathologies.
format Статья
author Lyakhova, U. A.
Ляхова, У. А.
Lyakhov, P. A.
Ляхов, П. А.
author_facet Lyakhova, U. A.
Ляхова, У. А.
Lyakhov, P. A.
Ляхов, П. А.
author_sort Lyakhova, U. A.
title Multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data
title_short Multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data
title_full Multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data
title_fullStr Multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data
title_full_unstemmed Multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data
title_sort multimodal ensemble neural network system for skin cancer detection on heterogeneous dermatological data
publisher Saint Petersburg State University
publishDate 2024
url https://dspace.ncfu.ru/handle/123456789/29404
work_keys_str_mv AT lyakhovaua multimodalensembleneuralnetworksystemforskincancerdetectiononheterogeneousdermatologicaldata
AT lâhovaua multimodalensembleneuralnetworksystemforskincancerdetectiononheterogeneousdermatologicaldata
AT lyakhovpa multimodalensembleneuralnetworksystemforskincancerdetectiononheterogeneousdermatologicaldata
AT lâhovpa multimodalensembleneuralnetworksystemforskincancerdetectiononheterogeneousdermatologicaldata
AT lyakhovaua mulʹtimodalʹnaâansamblevaânejrosetevaâsistemaobnaruženiârakakožinaosnoveanalizageterogennyhdermatologičeskihdannyh
AT lâhovaua mulʹtimodalʹnaâansamblevaânejrosetevaâsistemaobnaruženiârakakožinaosnoveanalizageterogennyhdermatologičeskihdannyh
AT lyakhovpa mulʹtimodalʹnaâansamblevaânejrosetevaâsistemaobnaruženiârakakožinaosnoveanalizageterogennyhdermatologičeskihdannyh
AT lâhovpa mulʹtimodalʹnaâansamblevaânejrosetevaâsistemaobnaruženiârakakožinaosnoveanalizageterogennyhdermatologičeskihdannyh
_version_ 1842245379371827200