Ir para o conteúdo

Numerical method for fractional sub-diffusion equation with space–time varying diffusivity and smooth solution

Using a new generalized L2 formula and a time varying compact finite difference operator, we construct a high order numerical scheme for a class of generalized fractional diffusion equation with space–time varying diffusivity that admits a smooth solution. The convergence order is shown to be O(τz3−...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Главные авторы: Alikhanov, A. A., Алиханов, А. А.
Formato: Статья
Idioma:English
Publicado em: Elsevier B.V. 2025
Assuntos:
Acesso em linha:https://dspace.ncfu.ru/handle/123456789/29619
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:Using a new generalized L2 formula and a time varying compact finite difference operator, we construct a high order numerical scheme for a class of generalized fractional diffusion equation with space–time varying diffusivity that admits a smooth solution. The convergence order is shown to be O(τz3−α+h4) via the energy method and demonstrated by numerical experiments. Our contributions, which improve some previous work, focus primarily on two aspects: (i) we develop a novel generalized L2 formula achieving O(τz3−α) accuracy; (ii) we derive an essential a priori estimate for a time-varying compact finite difference operator, ensuring the new numerical scheme is stable and convergent.