Numerical method for fractional sub-diffusion equation with space–time varying diffusivity and smooth solution
Using a new generalized L2 formula and a time varying compact finite difference operator, we construct a high order numerical scheme for a class of generalized fractional diffusion equation with space–time varying diffusivity that admits a smooth solution. The convergence order is shown to be O(τz3−...
Sparad:
| Huvudupphovsmän: | , |
|---|---|
| Materialtyp: | Статья |
| Språk: | English |
| Publicerad: |
Elsevier B.V.
2025
|
| Ämnen: | |
| Länkar: | https://dspace.ncfu.ru/handle/123456789/29619 |
| Taggar: |
Lägg till en tagg
Inga taggar, Lägg till första taggen!
|
| Sammanfattning: | Using a new generalized L2 formula and a time varying compact finite difference operator, we construct a high order numerical scheme for a class of generalized fractional diffusion equation with space–time varying diffusivity that admits a smooth solution. The convergence order is shown to be O(τz3−α+h4) via the energy method and demonstrated by numerical experiments. Our contributions, which improve some previous work, focus primarily on two aspects: (i) we develop a novel generalized L2 formula achieving O(τz3−α) accuracy; (ii) we derive an essential a priori estimate for a time-varying compact finite difference operator, ensuring the new numerical scheme is stable and convergent. |
|---|