Пропуск в контексте

Numerical method for fractional sub-diffusion equation with space–time varying diffusivity and smooth solution

Using a new generalized L2 formula and a time varying compact finite difference operator, we construct a high order numerical scheme for a class of generalized fractional diffusion equation with space–time varying diffusivity that admits a smooth solution. The convergence order is shown to be O(τz3−...

全面介绍

Сохранить в:
书目详细资料
Главные авторы: Alikhanov, A. A., Алиханов, А. А.
格式: Статья
语言:English
出版: Elsevier B.V. 2025
主题:
在线阅读:https://dspace.ncfu.ru/handle/123456789/29619
标签: 添加标签
没有标签, 成为第一个标记此记录!
实物特征
总结:Using a new generalized L2 formula and a time varying compact finite difference operator, we construct a high order numerical scheme for a class of generalized fractional diffusion equation with space–time varying diffusivity that admits a smooth solution. The convergence order is shown to be O(τz3−α+h4) via the energy method and demonstrated by numerical experiments. Our contributions, which improve some previous work, focus primarily on two aspects: (i) we develop a novel generalized L2 formula achieving O(τz3−α) accuracy; (ii) we derive an essential a priori estimate for a time-varying compact finite difference operator, ensuring the new numerical scheme is stable and convergent.