Numerical method for fractional sub-diffusion equation with space–time varying diffusivity and smooth solution
Using a new generalized L2 formula and a time varying compact finite difference operator, we construct a high order numerical scheme for a class of generalized fractional diffusion equation with space–time varying diffusivity that admits a smooth solution. The convergence order is shown to be O(τz3−...
Gorde:
| Egile Nagusiak: | Alikhanov, A. A., Алиханов, А. А. |
|---|---|
| Formatua: | Статья |
| Hizkuntza: | English |
| Argitaratua: |
Elsevier B.V.
2025
|
| Gaiak: | |
| Sarrera elektronikoa: | https://dspace.ncfu.ru/handle/123456789/29619 |
| Etiketak: |
Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
|
Antzeko izenburuak
-
Stable numerical schemes for time-fractional diffusion equation with generalized memory kernel
nork: Alikhanov, A. A., et al.
Argitaratua: (2021) -
A high-order compact difference scheme for the multi-term time-fractional Sobolev-type convection-diffusion equation
nork: Alikhanov, A. A., et al.
Argitaratua: (2025) -
Analytical Solutions and Computer Modeling of a Boundary Value Problem for a Nonstationary System of Nernst–Planck–Poisson Equations in a Diffusion Layer
nork: Chekanov, V. S., et al.
Argitaratua: (2025) -
A novel explicit fast numerical scheme for the Cauchy problem for integro-differential equations with a difference kernel and its application
nork: Alikhanov, A. A., et al.
Argitaratua: (2024) -
Fabrication and characterization of LuAG: Er ceramics with high optical transmission
nork: Kravtsov, A. A., et al.
Argitaratua: (2025)