Numerical method for fractional sub-diffusion equation with space–time varying diffusivity and smooth solution
Using a new generalized L2 formula and a time varying compact finite difference operator, we construct a high order numerical scheme for a class of generalized fractional diffusion equation with space–time varying diffusivity that admits a smooth solution. The convergence order is shown to be O(τz3−...
保存先:
| 主要な著者: | Alikhanov, A. A., Алиханов, А. А. |
|---|---|
| フォーマット: | Статья |
| 言語: | English |
| 出版事項: |
Elsevier B.V.
2025
|
| 主題: | |
| オンライン・アクセス: | https://dspace.ncfu.ru/handle/123456789/29619 |
| タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Stable numerical schemes for time-fractional diffusion equation with generalized memory kernel
著者:: Alikhanov, A. A., 等
出版事項: (2021) -
A high-order compact difference scheme for the multi-term time-fractional Sobolev-type convection-diffusion equation
著者:: Alikhanov, A. A., 等
出版事項: (2025) -
Analytical Solutions and Computer Modeling of a Boundary Value Problem for a Nonstationary System of Nernst–Planck–Poisson Equations in a Diffusion Layer
著者:: Chekanov, V. S., 等
出版事項: (2025) -
A novel explicit fast numerical scheme for the Cauchy problem for integro-differential equations with a difference kernel and its application
著者:: Alikhanov, A. A., 等
出版事項: (2024) -
Fabrication and characterization of LuAG: Er ceramics with high optical transmission
著者:: Kravtsov, A. A., 等
出版事項: (2025)