Пропуск в контексте

On the Frequency of Internal Gravity Waves in the Atmosphere: Comparing Theory with Observations

This paper is devoted to the dynamics of the propagation of non-planetary scale internal gravity waves (IGWs) in the stratified atmosphere. We consider the system of equations describing internal gravity waves in three approximations: (1) the incompressible fluid approximation, (2) the anelastic gas...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Zakinyan, R. G., Закинян, Р. Г., Svetlichny, V. A., Светличный, В. А., Zakinyan, A. R., Закинян, А. Р.
Формат: Статья
Язык:English
Опубликовано: Multidisciplinary Digital Publishing Institute (MDPI) 2025
Темы:
Online-ссылка:https://dspace.ncfu.ru/handle/123456789/29635
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
id ir-123456789-29635
record_format dspace
spelling ir-123456789-296352025-02-06T12:31:41Z On the Frequency of Internal Gravity Waves in the Atmosphere: Comparing Theory with Observations Zakinyan, R. G. Закинян, Р. Г. Svetlichny, V. A. Светличный, В. А. Zakinyan, A. R. Закинян, А. Р. Brunt–Väisälä frequency Taylor–Goldstein equation Dispersion relation Gravity wave breaking Internal gravity waves Phase velocity This paper is devoted to the dynamics of the propagation of non-planetary scale internal gravity waves (IGWs) in the stratified atmosphere. We consider the system of equations describing internal gravity waves in three approximations: (1) the incompressible fluid approximation, (2) the anelastic gas (compressible fluid) approximation, and (3) a new approximation called the non-Boussinesq gas approximation. For each approximation, a different dispersion relation is given, from which it follows that the oscillation frequency of internal gravity waves depends on the direction of propagation, the horizontal and vertical components of the wave vector, the vertical gradient of the background temperature, and the background wind shear. In each of the three cases, the maximum frequency of internal gravity waves is different. Moreover, in the anelastic gas approximation, the maximum frequency is equal to the Brunt–Väisälä buoyancy frequency, and in the incompressible fluid approximation, it is larger than the Brunt–Väisälä frequency by a factor of (Formula presented.). In the model proposed in this paper, the value of the maximum frequency of internal gravity waves occupies an intermediate position between the above limits. The question arises: which of the above fluid representations adequately describe the dynamics of internal gravity waves? This paper compares the above theories with observational data and experiments. 2025-02-06T12:30:23Z 2025-02-06T12:30:23Z 2025 Статья Zakinyan, R.G., Kamil, A.H., Svetlichny, V.A., Zakinyan, A.R. On the Frequency of Internal Gravity Waves in the Atmosphere: Comparing Theory with Observations // Atmosphere. - 2025. - 16 (1). - статья № 73. - DOI: 10.3390/atmos16010073 https://dspace.ncfu.ru/handle/123456789/29635 en Atmosphere application/pdf application/pdf Multidisciplinary Digital Publishing Institute (MDPI)
institution СКФУ
collection Репозиторий
language English
topic Brunt–Väisälä frequency
Taylor–Goldstein equation
Dispersion relation
Gravity wave breaking
Internal gravity waves
Phase velocity
spellingShingle Brunt–Väisälä frequency
Taylor–Goldstein equation
Dispersion relation
Gravity wave breaking
Internal gravity waves
Phase velocity
Zakinyan, R. G.
Закинян, Р. Г.
Svetlichny, V. A.
Светличный, В. А.
Zakinyan, A. R.
Закинян, А. Р.
On the Frequency of Internal Gravity Waves in the Atmosphere: Comparing Theory with Observations
description This paper is devoted to the dynamics of the propagation of non-planetary scale internal gravity waves (IGWs) in the stratified atmosphere. We consider the system of equations describing internal gravity waves in three approximations: (1) the incompressible fluid approximation, (2) the anelastic gas (compressible fluid) approximation, and (3) a new approximation called the non-Boussinesq gas approximation. For each approximation, a different dispersion relation is given, from which it follows that the oscillation frequency of internal gravity waves depends on the direction of propagation, the horizontal and vertical components of the wave vector, the vertical gradient of the background temperature, and the background wind shear. In each of the three cases, the maximum frequency of internal gravity waves is different. Moreover, in the anelastic gas approximation, the maximum frequency is equal to the Brunt–Väisälä buoyancy frequency, and in the incompressible fluid approximation, it is larger than the Brunt–Väisälä frequency by a factor of (Formula presented.). In the model proposed in this paper, the value of the maximum frequency of internal gravity waves occupies an intermediate position between the above limits. The question arises: which of the above fluid representations adequately describe the dynamics of internal gravity waves? This paper compares the above theories with observational data and experiments.
format Статья
author Zakinyan, R. G.
Закинян, Р. Г.
Svetlichny, V. A.
Светличный, В. А.
Zakinyan, A. R.
Закинян, А. Р.
author_facet Zakinyan, R. G.
Закинян, Р. Г.
Svetlichny, V. A.
Светличный, В. А.
Zakinyan, A. R.
Закинян, А. Р.
author_sort Zakinyan, R. G.
title On the Frequency of Internal Gravity Waves in the Atmosphere: Comparing Theory with Observations
title_short On the Frequency of Internal Gravity Waves in the Atmosphere: Comparing Theory with Observations
title_full On the Frequency of Internal Gravity Waves in the Atmosphere: Comparing Theory with Observations
title_fullStr On the Frequency of Internal Gravity Waves in the Atmosphere: Comparing Theory with Observations
title_full_unstemmed On the Frequency of Internal Gravity Waves in the Atmosphere: Comparing Theory with Observations
title_sort on the frequency of internal gravity waves in the atmosphere: comparing theory with observations
publisher Multidisciplinary Digital Publishing Institute (MDPI)
publishDate 2025
url https://dspace.ncfu.ru/handle/123456789/29635
work_keys_str_mv AT zakinyanrg onthefrequencyofinternalgravitywavesintheatmospherecomparingtheorywithobservations
AT zakinânrg onthefrequencyofinternalgravitywavesintheatmospherecomparingtheorywithobservations
AT svetlichnyva onthefrequencyofinternalgravitywavesintheatmospherecomparingtheorywithobservations
AT svetličnyjva onthefrequencyofinternalgravitywavesintheatmospherecomparingtheorywithobservations
AT zakinyanar onthefrequencyofinternalgravitywavesintheatmospherecomparingtheorywithobservations
AT zakinânar onthefrequencyofinternalgravitywavesintheatmospherecomparingtheorywithobservations
_version_ 1842245719055925248