A high-order compact difference scheme for the multi-term time-fractional Sobolev-type convection-diffusion equation
This paper presents two high-order compact difference schemes to discuss the numerical solution of the one-dimensional and two-dimensional multi-term time-fractional convection-diffusion equation of the Sobolev type based on the Caputo fractional derivative. For this purpose, we employ the L2 formul...
Guardado en:
| Autores principales: | Alikhanov, A. A., Алиханов, А. А., Shahbazi Asl, M., Шахбазиасль, М. |
|---|---|
| Formato: | Статья |
| Lenguaje: | English |
| Publicado: |
Springer Nature
2025
|
| Materias: | |
| Acceso en línea: | https://dspace.ncfu.ru/handle/123456789/29834 |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Numerical method for fractional sub-diffusion equation with space–time varying diffusivity and smooth solution
por: Alikhanov, A. A., et al.
Publicado: (2025) -
Stable numerical schemes for time-fractional diffusion equation with generalized memory kernel
por: Alikhanov, A. A., et al.
Publicado: (2021) -
Finite difference method for estimating the density of loess compacted by explosion
por: Tarasenko, E. O., et al.
Publicado: (2025) -
Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
por: Abdulkadirov, R. I., et al.
Publicado: (2024) -
NUMERICAL SIMULATION OF GAS ATOM COORDINATE DISPERSION IN A MATHEMATICAL MODEL OF DEEP BLAST COMPACTION FOR SUBSIDENCE SOILS
por: Tarasenko, E. O., et al.
Publicado: (2023)