A high-order compact difference scheme for the multi-term time-fractional Sobolev-type convection-diffusion equation
This paper presents two high-order compact difference schemes to discuss the numerical solution of the one-dimensional and two-dimensional multi-term time-fractional convection-diffusion equation of the Sobolev type based on the Caputo fractional derivative. For this purpose, we employ the L2 formul...
में बचाया:
| मुख्य लेखकों: | Alikhanov, A. A., Алиханов, А. А., Shahbazi Asl, M., Шахбазиасль, М. |
|---|---|
| स्वरूप: | Статья |
| भाषा: | English |
| प्रकाशित: |
Springer Nature
2025
|
| विषय: | |
| ऑनलाइन पहुंच: | https://dspace.ncfu.ru/handle/123456789/29834 |
| टैग : |
टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!
|
समान संसाधन
-
Numerical method for fractional sub-diffusion equation with space–time varying diffusivity and smooth solution
द्वारा: Alikhanov, A. A., और अन्य
प्रकाशित: (2025) -
Stable numerical schemes for time-fractional diffusion equation with generalized memory kernel
द्वारा: Alikhanov, A. A., और अन्य
प्रकाशित: (2021) -
Finite difference method for estimating the density of loess compacted by explosion
द्वारा: Tarasenko, E. O., और अन्य
प्रकाशित: (2025) -
Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
द्वारा: Abdulkadirov, R. I., और अन्य
प्रकाशित: (2024) -
NUMERICAL SIMULATION OF GAS ATOM COORDINATE DISPERSION IN A MATHEMATICAL MODEL OF DEEP BLAST COMPACTION FOR SUBSIDENCE SOILS
द्वारा: Tarasenko, E. O., और अन्य
प्रकाशित: (2023)