Locally One-Dimensional Scheme for the Distribution Function Equation by Ice Particle Masses Considering the Interaction of Droplets and Crystals
This work is devoted to the construction of a locally one-dimensional difference scheme for calculating the first boundary value problem for a general parabolic equation for the mass distribution function of ice particles. The functions are introduced such that and give at each point at time the con...
Сохранить в:
| Главные авторы: | Khibiev, A. H., Хибиев, А. Х. |
|---|---|
| Формат: | Статья |
| Язык: | English |
| Опубликовано: |
Pleiades Publishing
2025
|
| Темы: | |
| Online-ссылка: | https://dspace.ncfu.ru/handle/123456789/30362 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Схожие документы
-
Stable numerical schemes for time-fractional diffusion equation with generalized memory kernel
Автор: Alikhanov, A. A., и др.
Опубликовано: (2021) -
EXPONENT SPLITTING SCHEMES FOR EVOLUTION EQUATIONS WITH FRACTIONAL POWERS OF OPERATORS
Автор: Vabishchevich, P. N., и др.
Опубликовано: (2023) -
A high-order compact difference scheme for the multi-term time-fractional Sobolev-type convection-diffusion equation
Автор: Alikhanov, A. A., и др.
Опубликовано: (2025) -
Splitting Schemes for Evolution Equations with a Factorized Operator
Автор: Vabishchevich, P. N., и др.
Опубликовано: (2024) -
A novel explicit fast numerical scheme for the Cauchy problem for integro-differential equations with a difference kernel and its application
Автор: Alikhanov, A. A., и др.
Опубликовано: (2024)