Пропуск в контексте

Machine Learning Research Methods for Identifying Inaccurate Content

Social media, especially when disseminating news, is a valuable information resource. The paper presents methods for detecting fake news, comparing their effectiveness, identifying existing problems, and describes the vectors of further development of this research area. The paper begins with a desc...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Lapina, M. A., Лапина, М. А., Lapin, V. A., Лапин, В. А., Bagautdinova, A. R.
Другие авторы: Багаутдинова, А. Р.
Формат: Статья
Язык:English
Опубликовано: Springer Science and Business Media Deutschland GmbH 2025
Темы:
Online-ссылка:https://dspace.ncfu.ru/handle/123456789/30519
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
id ir-123456789-30519
record_format dspace
spelling ir-123456789-305192025-06-18T12:13:10Z Machine Learning Research Methods for Identifying Inaccurate Content Lapina, M. A. Лапина, М. А. Lapin, V. A. Лапин, В. А. Bagautdinova, A. R. Багаутдинова, А. Р. Artificial intelligence Social networks Authenticity Data analysis Deception recognition Deep learning Facial expression Lie detection Fake news Machine learning Neural networks Social media, especially when disseminating news, is a valuable information resource. The paper presents methods for detecting fake news, comparing their effectiveness, identifying existing problems, and describes the vectors of further development of this research area. The paper begins with a description of the relevance of the Fake News problem, which clearly describes the negative impact of false news on all spheres of human life. The following is a description of methods for detecting false news, starting from the usual rules of text analysis and ending with complex ML algorithms. In this paper, a comparative analysis of detection methods is carried out, which is based on criteria of efficiency and accuracy. The author identifies the main problems of existing methods related to data quality, changing Fake News formats and the difficulties of automatically determining the reliability of information. 2025-06-18T12:05:59Z 2025-06-18T12:05:59Z 2025 Статья Lapina M., Anita M., Bagautdinova A., Lapin V., Rudenko M. Machine Learning Research Methods for Identifying Inaccurate Content // Lecture Notes in Networks and Systems. - 2025. - 1295. - pp. 193 - 201. - DOI: 10.1007/978-981-96-3311-1_16 https://dspace.ncfu.ru/handle/123456789/30519 en Lecture Notes in Networks and Systems application/pdf Springer Science and Business Media Deutschland GmbH
institution СКФУ
collection Репозиторий
language English
topic Artificial intelligence
Social networks
Authenticity
Data analysis
Deception recognition
Deep learning
Facial expression
Lie detection
Fake news
Machine learning
Neural networks
spellingShingle Artificial intelligence
Social networks
Authenticity
Data analysis
Deception recognition
Deep learning
Facial expression
Lie detection
Fake news
Machine learning
Neural networks
Lapina, M. A.
Лапина, М. А.
Lapin, V. A.
Лапин, В. А.
Bagautdinova, A. R.
Machine Learning Research Methods for Identifying Inaccurate Content
description Social media, especially when disseminating news, is a valuable information resource. The paper presents methods for detecting fake news, comparing their effectiveness, identifying existing problems, and describes the vectors of further development of this research area. The paper begins with a description of the relevance of the Fake News problem, which clearly describes the negative impact of false news on all spheres of human life. The following is a description of methods for detecting false news, starting from the usual rules of text analysis and ending with complex ML algorithms. In this paper, a comparative analysis of detection methods is carried out, which is based on criteria of efficiency and accuracy. The author identifies the main problems of existing methods related to data quality, changing Fake News formats and the difficulties of automatically determining the reliability of information.
author2 Багаутдинова, А. Р.
author_facet Багаутдинова, А. Р.
Lapina, M. A.
Лапина, М. А.
Lapin, V. A.
Лапин, В. А.
Bagautdinova, A. R.
format Статья
author Lapina, M. A.
Лапина, М. А.
Lapin, V. A.
Лапин, В. А.
Bagautdinova, A. R.
author_sort Lapina, M. A.
title Machine Learning Research Methods for Identifying Inaccurate Content
title_short Machine Learning Research Methods for Identifying Inaccurate Content
title_full Machine Learning Research Methods for Identifying Inaccurate Content
title_fullStr Machine Learning Research Methods for Identifying Inaccurate Content
title_full_unstemmed Machine Learning Research Methods for Identifying Inaccurate Content
title_sort machine learning research methods for identifying inaccurate content
publisher Springer Science and Business Media Deutschland GmbH
publishDate 2025
url https://dspace.ncfu.ru/handle/123456789/30519
work_keys_str_mv AT lapinama machinelearningresearchmethodsforidentifyinginaccuratecontent
AT lapinama machinelearningresearchmethodsforidentifyinginaccuratecontent
AT lapinva machinelearningresearchmethodsforidentifyinginaccuratecontent
AT lapinva machinelearningresearchmethodsforidentifyinginaccuratecontent
AT bagautdinovaar machinelearningresearchmethodsforidentifyinginaccuratecontent
_version_ 1842245687637442560