Пропуск в контексте

Physics-informed neural network model using natural gradient descent with Dirichlet distribution

In this article we propose the physics-informed neural network model which contains the natural gradient descent with Dirichlet distribution. Such an optimizer can more accurately converge in the global minimum of the loss function in a short number of iterations. Due to natural gradient, one consid...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Abdulkadirov, R. I., Абдулкадиров, Р. И., Lyakhov, P. A., Ляхов, П. А., Baboshina, V. A., Бабошина, В. А.
Формат: Статья
Язык:English
Опубликовано: Elsevier Ltd 2025
Темы:
Online-ссылка:https://dspace.ncfu.ru/handle/123456789/30520
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
id ir-123456789-30520
record_format dspace
spelling ir-123456789-305202025-06-18T12:30:42Z Physics-informed neural network model using natural gradient descent with Dirichlet distribution Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Baboshina, V. A. Бабошина, В. А. Machine learning Physics-informed neural networks Natural gradient descent Partial differential equations Optimization In this article we propose the physics-informed neural network model which contains the natural gradient descent with Dirichlet distribution. Such an optimizer can more accurately converge in the global minimum of the loss function in a short number of iterations. Due to natural gradient, one considers not only the gradient directions but also convexity of the loss function. Using the Dirichlet distribution, natural gradient allows for a reduction in time consumption comparing with the second order approaches. The proposed physics-informed neural model increases the accuracy of solving initial and boundary value problems for partial differential equations, such as the heat and Burgers equation, on 0%−10% Gaussian noised data. Compared with the state-of-the-art optimization methods, the proposed natural gradient descent with Dirichlet distribution achieves the more accurate solution by 9%−62%, estimated by mean squared error and L2 error. 2025-06-18T12:29:17Z 2025-06-18T12:29:17Z 2025 Статья Abdulkadirov R., Lyakhov P., Baboshina V. Physics-informed neural network model using natural gradient descent with Dirichlet distribution // Engineering Analysis with Boundary Elements. - 2025. - 178. - art. no. 106282. - DOI: 10.1016/j.enganabound.2025.106282 https://dspace.ncfu.ru/handle/123456789/30520 en Engineering Analysis with Boundary Elements application/pdf application/pdf Elsevier Ltd
institution СКФУ
collection Репозиторий
language English
topic Machine learning
Physics-informed neural networks
Natural gradient descent
Partial differential equations
Optimization
spellingShingle Machine learning
Physics-informed neural networks
Natural gradient descent
Partial differential equations
Optimization
Abdulkadirov, R. I.
Абдулкадиров, Р. И.
Lyakhov, P. A.
Ляхов, П. А.
Baboshina, V. A.
Бабошина, В. А.
Physics-informed neural network model using natural gradient descent with Dirichlet distribution
description In this article we propose the physics-informed neural network model which contains the natural gradient descent with Dirichlet distribution. Such an optimizer can more accurately converge in the global minimum of the loss function in a short number of iterations. Due to natural gradient, one considers not only the gradient directions but also convexity of the loss function. Using the Dirichlet distribution, natural gradient allows for a reduction in time consumption comparing with the second order approaches. The proposed physics-informed neural model increases the accuracy of solving initial and boundary value problems for partial differential equations, such as the heat and Burgers equation, on 0%−10% Gaussian noised data. Compared with the state-of-the-art optimization methods, the proposed natural gradient descent with Dirichlet distribution achieves the more accurate solution by 9%−62%, estimated by mean squared error and L2 error.
format Статья
author Abdulkadirov, R. I.
Абдулкадиров, Р. И.
Lyakhov, P. A.
Ляхов, П. А.
Baboshina, V. A.
Бабошина, В. А.
author_facet Abdulkadirov, R. I.
Абдулкадиров, Р. И.
Lyakhov, P. A.
Ляхов, П. А.
Baboshina, V. A.
Бабошина, В. А.
author_sort Abdulkadirov, R. I.
title Physics-informed neural network model using natural gradient descent with Dirichlet distribution
title_short Physics-informed neural network model using natural gradient descent with Dirichlet distribution
title_full Physics-informed neural network model using natural gradient descent with Dirichlet distribution
title_fullStr Physics-informed neural network model using natural gradient descent with Dirichlet distribution
title_full_unstemmed Physics-informed neural network model using natural gradient descent with Dirichlet distribution
title_sort physics-informed neural network model using natural gradient descent with dirichlet distribution
publisher Elsevier Ltd
publishDate 2025
url https://dspace.ncfu.ru/handle/123456789/30520
work_keys_str_mv AT abdulkadirovri physicsinformedneuralnetworkmodelusingnaturalgradientdescentwithdirichletdistribution
AT abdulkadirovri physicsinformedneuralnetworkmodelusingnaturalgradientdescentwithdirichletdistribution
AT lyakhovpa physicsinformedneuralnetworkmodelusingnaturalgradientdescentwithdirichletdistribution
AT lâhovpa physicsinformedneuralnetworkmodelusingnaturalgradientdescentwithdirichletdistribution
AT baboshinava physicsinformedneuralnetworkmodelusingnaturalgradientdescentwithdirichletdistribution
AT babošinava physicsinformedneuralnetworkmodelusingnaturalgradientdescentwithdirichletdistribution
_version_ 1842245779262013440