Physics-informed neural network model using natural gradient descent with Dirichlet distribution
In this article we propose the physics-informed neural network model which contains the natural gradient descent with Dirichlet distribution. Such an optimizer can more accurately converge in the global minimum of the loss function in a short number of iterations. Due to natural gradient, one consid...
Сохранить в:
| Главные авторы: | , , , , , |
|---|---|
| Формат: | Статья |
| Язык: | English |
| Опубликовано: |
Elsevier Ltd
2025
|
| Темы: | |
| Online-ссылка: | https://dspace.ncfu.ru/handle/123456789/30520 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
| id |
ir-123456789-30520 |
|---|---|
| record_format |
dspace |
| spelling |
ir-123456789-305202025-06-18T12:30:42Z Physics-informed neural network model using natural gradient descent with Dirichlet distribution Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Baboshina, V. A. Бабошина, В. А. Machine learning Physics-informed neural networks Natural gradient descent Partial differential equations Optimization In this article we propose the physics-informed neural network model which contains the natural gradient descent with Dirichlet distribution. Such an optimizer can more accurately converge in the global minimum of the loss function in a short number of iterations. Due to natural gradient, one considers not only the gradient directions but also convexity of the loss function. Using the Dirichlet distribution, natural gradient allows for a reduction in time consumption comparing with the second order approaches. The proposed physics-informed neural model increases the accuracy of solving initial and boundary value problems for partial differential equations, such as the heat and Burgers equation, on 0%−10% Gaussian noised data. Compared with the state-of-the-art optimization methods, the proposed natural gradient descent with Dirichlet distribution achieves the more accurate solution by 9%−62%, estimated by mean squared error and L2 error. 2025-06-18T12:29:17Z 2025-06-18T12:29:17Z 2025 Статья Abdulkadirov R., Lyakhov P., Baboshina V. Physics-informed neural network model using natural gradient descent with Dirichlet distribution // Engineering Analysis with Boundary Elements. - 2025. - 178. - art. no. 106282. - DOI: 10.1016/j.enganabound.2025.106282 https://dspace.ncfu.ru/handle/123456789/30520 en Engineering Analysis with Boundary Elements application/pdf application/pdf Elsevier Ltd |
| institution |
СКФУ |
| collection |
Репозиторий |
| language |
English |
| topic |
Machine learning Physics-informed neural networks Natural gradient descent Partial differential equations Optimization |
| spellingShingle |
Machine learning Physics-informed neural networks Natural gradient descent Partial differential equations Optimization Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Baboshina, V. A. Бабошина, В. А. Physics-informed neural network model using natural gradient descent with Dirichlet distribution |
| description |
In this article we propose the physics-informed neural network model which contains the natural gradient descent with Dirichlet distribution. Such an optimizer can more accurately converge in the global minimum of the loss function in a short number of iterations. Due to natural gradient, one considers not only the gradient directions but also convexity of the loss function. Using the Dirichlet distribution, natural gradient allows for a reduction in time consumption comparing with the second order approaches. The proposed physics-informed neural model increases the accuracy of solving initial and boundary value problems for partial differential equations, such as the heat and Burgers equation, on 0%−10% Gaussian noised data. Compared with the state-of-the-art optimization methods, the proposed natural gradient descent with Dirichlet distribution achieves the more accurate solution by 9%−62%, estimated by mean squared error and L2 error. |
| format |
Статья |
| author |
Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Baboshina, V. A. Бабошина, В. А. |
| author_facet |
Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Baboshina, V. A. Бабошина, В. А. |
| author_sort |
Abdulkadirov, R. I. |
| title |
Physics-informed neural network model using natural gradient descent with Dirichlet distribution |
| title_short |
Physics-informed neural network model using natural gradient descent with Dirichlet distribution |
| title_full |
Physics-informed neural network model using natural gradient descent with Dirichlet distribution |
| title_fullStr |
Physics-informed neural network model using natural gradient descent with Dirichlet distribution |
| title_full_unstemmed |
Physics-informed neural network model using natural gradient descent with Dirichlet distribution |
| title_sort |
physics-informed neural network model using natural gradient descent with dirichlet distribution |
| publisher |
Elsevier Ltd |
| publishDate |
2025 |
| url |
https://dspace.ncfu.ru/handle/123456789/30520 |
| work_keys_str_mv |
AT abdulkadirovri physicsinformedneuralnetworkmodelusingnaturalgradientdescentwithdirichletdistribution AT abdulkadirovri physicsinformedneuralnetworkmodelusingnaturalgradientdescentwithdirichletdistribution AT lyakhovpa physicsinformedneuralnetworkmodelusingnaturalgradientdescentwithdirichletdistribution AT lâhovpa physicsinformedneuralnetworkmodelusingnaturalgradientdescentwithdirichletdistribution AT baboshinava physicsinformedneuralnetworkmodelusingnaturalgradientdescentwithdirichletdistribution AT babošinava physicsinformedneuralnetworkmodelusingnaturalgradientdescentwithdirichletdistribution |
| _version_ |
1842245779262013440 |