Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms
Autism spectrum disorder (ASD) is a neurological condition characterized by impairments in social interaction. This diagnosis carries economic and social implications due to its high prevalence and associated morbidity. Data from electroencephalogram (EEG) sensors is numerical and serves as the inpu...
Сохранить в:
| Главные авторы: | , , , , , , , , , |
|---|---|
| 格式: | Статья |
| 语言: | English |
| 出版: |
Saint Petersburg State University
2025
|
| 主题: | |
| 在线阅读: | https://dspace.ncfu.ru/handle/123456789/30648 |
| 标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
| id |
ir-123456789-30648 |
|---|---|
| record_format |
dspace |
| spelling |
ir-123456789-306482025-07-02T08:02:31Z Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms Выявление состояния внимания у детей с расстройствами аутистического спектра на основе нейросетевой классификации электроэнцефалограмм Lyakhov, P. A. Ляхов, П. А. Lyakhova, U. A. Ляхова, У. А. Baboshina, V. A. Бабошина, В. А. Baryshev, V. V. Барышев, В. В. Nagornov, N. N. Нагорнов, Н. Н. Autism spectrum disorder Processing from electroencephalogram Electroencephalogram Ensembling Multilayer linear perceptron Neural network Autism spectrum disorder (ASD) is a neurological condition characterized by impairments in social interaction. This diagnosis carries economic and social implications due to its high prevalence and associated morbidity. Data from electroencephalogram (EEG) sensors is numerical and serves as the input for machine learning-based predictions. The input data in this research includes features extracted from EEG signals, such as theta/beta ratio, theta/alpha ratio, and other relative power metrics, which are closely linked to cognitive control and attentional dynamics. These data are organized into two balanced classes: “Attention” and “No Attention,” comprising a total of 33 936 samples. This paper proposes 12 weighted and weighted-average ensemble models to enhance the accuracy of predicting attentional cues in individuals with ASD. For ensembling three multilayer perceptron architectures were developed and trained using various optimizers. The accuracy of the employed ensemble model of three multilayer perceptrons reached 95.90 %. The findings of this research can contribute to the advancement of novel diagnostic approaches and educational initiatives and serve as a foundation for future research utilizing machine learning techniques and the creation of innovative technologies for attention monitoring and training. 2025-07-02T08:00:40Z 2025-07-02T08:00:40Z 2025 Статья Lyakhov P.A., Lyakhova U.A., Baboshina V.A., Baryshev V.V., Nagornov N.N. Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms // Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya. - 2025. - 21 (1). - pp. 92 - 111. - DOI: 10.21638/spbu10.2025.107 https://dspace.ncfu.ru/handle/123456789/30648 en Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya application/pdf application/pdf Saint Petersburg State University |
| institution |
СКФУ |
| collection |
Репозиторий |
| language |
English |
| topic |
Autism spectrum disorder Processing from electroencephalogram Electroencephalogram Ensembling Multilayer linear perceptron Neural network |
| spellingShingle |
Autism spectrum disorder Processing from electroencephalogram Electroencephalogram Ensembling Multilayer linear perceptron Neural network Lyakhov, P. A. Ляхов, П. А. Lyakhova, U. A. Ляхова, У. А. Baboshina, V. A. Бабошина, В. А. Baryshev, V. V. Барышев, В. В. Nagornov, N. N. Нагорнов, Н. Н. Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms |
| description |
Autism spectrum disorder (ASD) is a neurological condition characterized by impairments in social interaction. This diagnosis carries economic and social implications due to its high prevalence and associated morbidity. Data from electroencephalogram (EEG) sensors is numerical and serves as the input for machine learning-based predictions. The input data in this research includes features extracted from EEG signals, such as theta/beta ratio, theta/alpha ratio, and other relative power metrics, which are closely linked to cognitive control and attentional dynamics. These data are organized into two balanced classes: “Attention” and “No Attention,” comprising a total of 33 936 samples. This paper proposes 12 weighted and weighted-average ensemble models to enhance the accuracy of predicting attentional cues in individuals with ASD. For ensembling three multilayer perceptron architectures were developed and trained using various optimizers. The accuracy of the employed ensemble model of three multilayer perceptrons reached 95.90 %. The findings of this research can contribute to the advancement of novel diagnostic approaches and educational initiatives and serve as a foundation for future research utilizing machine learning techniques and the creation of innovative technologies for attention monitoring and training. |
| format |
Статья |
| author |
Lyakhov, P. A. Ляхов, П. А. Lyakhova, U. A. Ляхова, У. А. Baboshina, V. A. Бабошина, В. А. Baryshev, V. V. Барышев, В. В. Nagornov, N. N. Нагорнов, Н. Н. |
| author_facet |
Lyakhov, P. A. Ляхов, П. А. Lyakhova, U. A. Ляхова, У. А. Baboshina, V. A. Бабошина, В. А. Baryshev, V. V. Барышев, В. В. Nagornov, N. N. Нагорнов, Н. Н. |
| author_sort |
Lyakhov, P. A. |
| title |
Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms |
| title_short |
Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms |
| title_full |
Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms |
| title_fullStr |
Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms |
| title_full_unstemmed |
Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms |
| title_sort |
detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms |
| publisher |
Saint Petersburg State University |
| publishDate |
2025 |
| url |
https://dspace.ncfu.ru/handle/123456789/30648 |
| work_keys_str_mv |
AT lyakhovpa detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms AT lâhovpa detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms AT lyakhovaua detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms AT lâhovaua detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms AT baboshinava detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms AT babošinava detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms AT baryshevvv detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms AT baryševvv detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms AT nagornovnn detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms AT nagornovnn detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms AT lyakhovpa vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm AT lâhovpa vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm AT lyakhovaua vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm AT lâhovaua vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm AT baboshinava vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm AT babošinava vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm AT baryshevvv vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm AT baryševvv vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm AT nagornovnn vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm AT nagornovnn vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm |
| _version_ |
1842245594544865280 |