Structural and optical properties of YAG:Ru ceramics
Optically transparent polycrystalline yttrium-aluminum garnet (YAG) doped with ruthenium atoms was synthesized for the first time. The ceramic material was produced from a precursor powder obtained through chemical precipitation. The phase composition, microstructure, and light transmission properti...
Збережено в:
| Автори: | , , , , , , , , , , , , , , , , , , , |
|---|---|
| Формат: | Статья |
| Мова: | English |
| Опубліковано: |
Elsevier B.V.
2025
|
| Предмети: | |
| Онлайн доступ: | https://dspace.ncfu.ru/handle/123456789/31827 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Резюме: | Optically transparent polycrystalline yttrium-aluminum garnet (YAG) doped with ruthenium atoms was synthesized for the first time. The ceramic material was produced from a precursor powder obtained through chemical precipitation. The phase composition, microstructure, and light transmission properties of the YAG:Ru ceramics were investigated. Absorption spectra in both the visible and infrared regions were recorded. The optical properties of the ceramics were examined both before and after annealing in air. It was observed that as the ruthenium content increased, the light transmittance coefficients decreased. In contrast, annealing the ceramic samples in air resulted in an increase in the light transmittance coefficients. Based on optical measurements, the band gap was calculated, revealing that the incorporation of ruthenium into the garnet shifted the absorption band edge toward the red region of the spectrum while simultaneously reducing the band gap. Furthermore, annealing the samples in air enhanced the shift of the absorption band edge toward the red region. The experimental data obtained were in good agreement with density functional theory (DFT) calculations for YAG:Ru supercells. |
|---|