Пропуск в контексте

Enhancing Drone Detection via Transformer Neural Network and Positive–Negative Momentum Optimizers

The rapid development of unmanned aerial vehicles (UAVs) has had a significant impact on the growth of the economic, industrial, and social welfare of society. The possibility of reaching places that are difficult and dangerous for humans to access with minimal use of third-party resources increases...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Lyakhov, P. A., Ляхов, П. А., Pismennyy, V. A., Письменный, В. А., Abdulkadirov, R. I., Абдулкадиров, Р. И., Nagornov, N. N., Нагорнов, Н. Н., Kalita, D. I., Калита, Д. И.
Формат: Статья
Язык:English
Опубликовано: Multidisciplinary Digital Publishing Institute (MDPI) 2025
Темы:
Online-ссылка:https://dspace.ncfu.ru/handle/123456789/31850
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
id ir-123456789-31850
record_format dspace
spelling ir-123456789-318502025-08-13T12:12:48Z Enhancing Drone Detection via Transformer Neural Network and Positive–Negative Momentum Optimizers Lyakhov, P. A. Ляхов, П. А. Pismennyy, V. A. Письменный, В. А. Abdulkadirov, R. I. Абдулкадиров, Р. И. Nagornov, N. N. Нагорнов, Н. Н. Kalita, D. I. Калита, Д. И. Moving object detection Economic welfare Optimization methods Antennas Yolov12 Accidents Drones Network architecture Object recognition System theory Object detection Video cameras Aerial vehicle The rapid development of unmanned aerial vehicles (UAVs) has had a significant impact on the growth of the economic, industrial, and social welfare of society. The possibility of reaching places that are difficult and dangerous for humans to access with minimal use of third-party resources increases the efficiency and quality of maintenance of construction structures, agriculture, and exploration, which are carried out with the help of drones with a predetermined trajectory. The widespread use of UAVs has caused problems with the control of the drones’ correctness following a given route, which leads to emergencies and accidents. Therefore, UAV monitoring with video cameras is of great importance. In this paper, we propose a Yolov12 architecture with positive–negative pulse-based optimization algorithms to solve the problem of drone detection on video data. Self-attention-based mechanisms in transformer neural networks (NNs) improved the quality of drone detection on video. The developed algorithms for training NN architectures improved the accuracy of drone detection by achieving the global extremum of the loss function in fewer epochs using positive–negative pulse-based optimization algorithms. The proposed approach improved object detection accuracy by 2.8 percentage points compared to known state-of-the-art analogs. 2025-08-13T12:09:16Z 2025-08-13T12:09:16Z 2025 Статья Lyakhov, P. A., Butusov, D. N., Pismennyy, V. A., Abdulkadirov, R. I., Nagornov, N. N., Ostrovskii, V. Y., Kalita, D. I. Enhancing Drone Detection via Transformer Neural Network and Positive–Negative Momentum Optimizers // Big Data and Cognitive Computing. - 2025. - 9 (7). - art. no. 167. - DOI: 10.3390/bdcc9070167 https://dspace.ncfu.ru/handle/123456789/31850 en Big Data and Cognitive Computing application/pdf application/pdf Multidisciplinary Digital Publishing Institute (MDPI)
institution СКФУ
collection Репозиторий
language English
topic Moving object detection
Economic welfare
Optimization methods
Antennas
Yolov12
Accidents
Drones
Network architecture
Object recognition
System theory
Object detection
Video cameras
Aerial vehicle
spellingShingle Moving object detection
Economic welfare
Optimization methods
Antennas
Yolov12
Accidents
Drones
Network architecture
Object recognition
System theory
Object detection
Video cameras
Aerial vehicle
Lyakhov, P. A.
Ляхов, П. А.
Pismennyy, V. A.
Письменный, В. А.
Abdulkadirov, R. I.
Абдулкадиров, Р. И.
Nagornov, N. N.
Нагорнов, Н. Н.
Kalita, D. I.
Калита, Д. И.
Enhancing Drone Detection via Transformer Neural Network and Positive–Negative Momentum Optimizers
description The rapid development of unmanned aerial vehicles (UAVs) has had a significant impact on the growth of the economic, industrial, and social welfare of society. The possibility of reaching places that are difficult and dangerous for humans to access with minimal use of third-party resources increases the efficiency and quality of maintenance of construction structures, agriculture, and exploration, which are carried out with the help of drones with a predetermined trajectory. The widespread use of UAVs has caused problems with the control of the drones’ correctness following a given route, which leads to emergencies and accidents. Therefore, UAV monitoring with video cameras is of great importance. In this paper, we propose a Yolov12 architecture with positive–negative pulse-based optimization algorithms to solve the problem of drone detection on video data. Self-attention-based mechanisms in transformer neural networks (NNs) improved the quality of drone detection on video. The developed algorithms for training NN architectures improved the accuracy of drone detection by achieving the global extremum of the loss function in fewer epochs using positive–negative pulse-based optimization algorithms. The proposed approach improved object detection accuracy by 2.8 percentage points compared to known state-of-the-art analogs.
format Статья
author Lyakhov, P. A.
Ляхов, П. А.
Pismennyy, V. A.
Письменный, В. А.
Abdulkadirov, R. I.
Абдулкадиров, Р. И.
Nagornov, N. N.
Нагорнов, Н. Н.
Kalita, D. I.
Калита, Д. И.
author_facet Lyakhov, P. A.
Ляхов, П. А.
Pismennyy, V. A.
Письменный, В. А.
Abdulkadirov, R. I.
Абдулкадиров, Р. И.
Nagornov, N. N.
Нагорнов, Н. Н.
Kalita, D. I.
Калита, Д. И.
author_sort Lyakhov, P. A.
title Enhancing Drone Detection via Transformer Neural Network and Positive–Negative Momentum Optimizers
title_short Enhancing Drone Detection via Transformer Neural Network and Positive–Negative Momentum Optimizers
title_full Enhancing Drone Detection via Transformer Neural Network and Positive–Negative Momentum Optimizers
title_fullStr Enhancing Drone Detection via Transformer Neural Network and Positive–Negative Momentum Optimizers
title_full_unstemmed Enhancing Drone Detection via Transformer Neural Network and Positive–Negative Momentum Optimizers
title_sort enhancing drone detection via transformer neural network and positive–negative momentum optimizers
publisher Multidisciplinary Digital Publishing Institute (MDPI)
publishDate 2025
url https://dspace.ncfu.ru/handle/123456789/31850
work_keys_str_mv AT lyakhovpa enhancingdronedetectionviatransformerneuralnetworkandpositivenegativemomentumoptimizers
AT lâhovpa enhancingdronedetectionviatransformerneuralnetworkandpositivenegativemomentumoptimizers
AT pismennyyva enhancingdronedetectionviatransformerneuralnetworkandpositivenegativemomentumoptimizers
AT pisʹmennyjva enhancingdronedetectionviatransformerneuralnetworkandpositivenegativemomentumoptimizers
AT abdulkadirovri enhancingdronedetectionviatransformerneuralnetworkandpositivenegativemomentumoptimizers
AT abdulkadirovri enhancingdronedetectionviatransformerneuralnetworkandpositivenegativemomentumoptimizers
AT nagornovnn enhancingdronedetectionviatransformerneuralnetworkandpositivenegativemomentumoptimizers
AT nagornovnn enhancingdronedetectionviatransformerneuralnetworkandpositivenegativemomentumoptimizers
AT kalitadi enhancingdronedetectionviatransformerneuralnetworkandpositivenegativemomentumoptimizers
AT kalitadi enhancingdronedetectionviatransformerneuralnetworkandpositivenegativemomentumoptimizers
_version_ 1842245481486352384