Przejdź do treści

Application of the residue number system to reduce hardware costs of the convolutional neural network implementation

Convolutional neural networks are a promising tool for solving the problem of pattern recognition. Most well-known convolutional neural networks implementations require a significant amount of memory to store weights in the process of learning and working. We propose a convolutional neural network a...

Szczegółowa specyfikacja

Zapisane w:
Opis bibliograficzny
Główni autorzy: Valueva, M. V., Валуева, М. В., Nagornov, N. N., Нагорнов, Н. Н., Lyakhov, P. A., Ляхов, П. А., Valuev, G. V., Валуев, Г. В., Chervyakov, N. I., Червяков, Н. И.
Format: Статья
Język:English
Wydane: Elsevier B.V. 2020
Hasła przedmiotowe:
Dostęp online:https://dspace.ncfu.ru/handle/20.500.12258/12120
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!
id ir-20.500.12258-12120
record_format dspace
spelling ir-20.500.12258-121202020-07-03T09:48:59Z Application of the residue number system to reduce hardware costs of the convolutional neural network implementation Valueva, M. V. Валуева, М. В. Nagornov, N. N. Нагорнов, Н. Н. Lyakhov, P. A. Ляхов, П. А. Valuev, G. V. Валуев, Г. В. Chervyakov, N. I. Червяков, Н. И. Convolutional neural networks Field-programmable gate array (FPGA) Image processing Quantization noise Residue number system (RNS) Convolutional neural networks Convolutional neural networks are a promising tool for solving the problem of pattern recognition. Most well-known convolutional neural networks implementations require a significant amount of memory to store weights in the process of learning and working. We propose a convolutional neural network architecture in which the neural network is divided into hardware and software parts to increase performance and reduce the cost of implementation resources. We also propose to use the residue number system (RNS) in the hardware part to implement the convolutional layer of the neural network. Software simulations using Matlab 2018b showed that convolutional neural network with a minimum number of layers can be quickly and successfully trained. The hardware implementation of the convolution layer shows that the use of RNS allows to reduce the hardware costs on 7.86%–37.78% compared to the two's complement implementation. The use of the proposed heterogeneous implementation reduces the average time of image recognition by 41.17% 2020-06-25T14:20:38Z 2020-06-25T14:20:38Z 2020 Статья Valueva, M.V., Nagornov, N.N., Lyakhov, P.A., Valuev, G.V., Chervyakov, N.I. Application of the residue number system to reduce hardware costs of the convolutional neural network implementation // Mathematics and Computers in Simulation. - 2020. - Volume 177. - Pages 232-243 http://hdl.handle.net/20.500.12258/12120 en Mathematics and Computers in Simulation application/pdf application/pdf Elsevier B.V.
institution СКФУ
collection Репозиторий
language English
topic Convolutional neural networks
Field-programmable gate array (FPGA)
Image processing
Quantization noise
Residue number system (RNS)
Convolutional neural networks
spellingShingle Convolutional neural networks
Field-programmable gate array (FPGA)
Image processing
Quantization noise
Residue number system (RNS)
Convolutional neural networks
Valueva, M. V.
Валуева, М. В.
Nagornov, N. N.
Нагорнов, Н. Н.
Lyakhov, P. A.
Ляхов, П. А.
Valuev, G. V.
Валуев, Г. В.
Chervyakov, N. I.
Червяков, Н. И.
Application of the residue number system to reduce hardware costs of the convolutional neural network implementation
description Convolutional neural networks are a promising tool for solving the problem of pattern recognition. Most well-known convolutional neural networks implementations require a significant amount of memory to store weights in the process of learning and working. We propose a convolutional neural network architecture in which the neural network is divided into hardware and software parts to increase performance and reduce the cost of implementation resources. We also propose to use the residue number system (RNS) in the hardware part to implement the convolutional layer of the neural network. Software simulations using Matlab 2018b showed that convolutional neural network with a minimum number of layers can be quickly and successfully trained. The hardware implementation of the convolution layer shows that the use of RNS allows to reduce the hardware costs on 7.86%–37.78% compared to the two's complement implementation. The use of the proposed heterogeneous implementation reduces the average time of image recognition by 41.17%
format Статья
author Valueva, M. V.
Валуева, М. В.
Nagornov, N. N.
Нагорнов, Н. Н.
Lyakhov, P. A.
Ляхов, П. А.
Valuev, G. V.
Валуев, Г. В.
Chervyakov, N. I.
Червяков, Н. И.
author_facet Valueva, M. V.
Валуева, М. В.
Nagornov, N. N.
Нагорнов, Н. Н.
Lyakhov, P. A.
Ляхов, П. А.
Valuev, G. V.
Валуев, Г. В.
Chervyakov, N. I.
Червяков, Н. И.
author_sort Valueva, M. V.
title Application of the residue number system to reduce hardware costs of the convolutional neural network implementation
title_short Application of the residue number system to reduce hardware costs of the convolutional neural network implementation
title_full Application of the residue number system to reduce hardware costs of the convolutional neural network implementation
title_fullStr Application of the residue number system to reduce hardware costs of the convolutional neural network implementation
title_full_unstemmed Application of the residue number system to reduce hardware costs of the convolutional neural network implementation
title_sort application of the residue number system to reduce hardware costs of the convolutional neural network implementation
publisher Elsevier B.V.
publishDate 2020
url https://dspace.ncfu.ru/handle/20.500.12258/12120
work_keys_str_mv AT valuevamv applicationoftheresiduenumbersystemtoreducehardwarecostsoftheconvolutionalneuralnetworkimplementation
AT valuevamv applicationoftheresiduenumbersystemtoreducehardwarecostsoftheconvolutionalneuralnetworkimplementation
AT nagornovnn applicationoftheresiduenumbersystemtoreducehardwarecostsoftheconvolutionalneuralnetworkimplementation
AT nagornovnn applicationoftheresiduenumbersystemtoreducehardwarecostsoftheconvolutionalneuralnetworkimplementation
AT lyakhovpa applicationoftheresiduenumbersystemtoreducehardwarecostsoftheconvolutionalneuralnetworkimplementation
AT lâhovpa applicationoftheresiduenumbersystemtoreducehardwarecostsoftheconvolutionalneuralnetworkimplementation
AT valuevgv applicationoftheresiduenumbersystemtoreducehardwarecostsoftheconvolutionalneuralnetworkimplementation
AT valuevgv applicationoftheresiduenumbersystemtoreducehardwarecostsoftheconvolutionalneuralnetworkimplementation
AT chervyakovni applicationoftheresiduenumbersystemtoreducehardwarecostsoftheconvolutionalneuralnetworkimplementation
AT červâkovni applicationoftheresiduenumbersystemtoreducehardwarecostsoftheconvolutionalneuralnetworkimplementation
_version_ 1760600113818894336