Пропуск в контексте

Classification of moduli sets for residue number system with special diagonal functions

The paper presents algorithms for the generation of Residue Number System (RNS) triples with SQ=2k-1 and quadruples with SQ=2k for some k. Triples and quadruples allow us to design efficient hardware implementations of non-modular operations in RNS such as division, sign detection, comparison of num...

תיאור מלא

שמור ב:
מידע ביבליוגרפי
Главные авторы: Chervyakov, N. I., Червяков, Н. И., Lyakhov, P. A., Ляхов, П. А., Semyonova, N. F., Семенова, Н. Ф., Nazarov, A. S., Назаров, А. С., Valueva, M. V., Валуева, М. В.
פורמט: Статья
שפה:English
יצא לאור: Institute of Electrical and Electronics Engineers Inc. 2020
נושאים:
גישה מקוונת:https://dspace.ncfu.ru/handle/20.500.12258/14198
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
id ir-20.500.12258-14198
record_format dspace
spelling ir-20.500.12258-141982020-09-28T14:41:34Z Classification of moduli sets for residue number system with special diagonal functions Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Semyonova, N. F. Семенова, Н. Ф. Nazarov, A. S. Назаров, А. С. Valueva, M. V. Валуева, М. В. Average bit-width Diagonal Function (DF) FPGA Hardware implementation Non-modular operations Quadruples Residue number system (RNS) RNS balance Computer hardware The paper presents algorithms for the generation of Residue Number System (RNS) triples with SQ=2k-1 and quadruples with SQ=2k for some k. Triples and quadruples allow us to design efficient hardware implementations of non-modular operations in RNS such as division, sign detection, comparison of numbers, reverse conversion with using of a diagonal function from requiring division with the remainder by the diagonal module SQ. Division with a remainder in the general case is the most complex arithmetic operation in computer technology. However, the consideration of special cases can significantly simplify this operation and increase the efficiency of hardware implementation. We show that there are 5573 good RNS triples (2301 even and 2372 odd) with elements less than 10 000, as the values of SQ vary from 25-1 to 227-1. In contrast, RNS quadruples with SQ=2k seem to be quite rare. Restricting our search to sums of the elements in a quadruple less than 4000 we find that exactly 31 such quadruples exist. Their values of SQ vary between 220 and 230 with always even exponent. We suggest the measure of RNS balance and find perfectly balanced RNS among triples according to this measure. We demonstrate the advantages of more balanced quadruples by means of hardware implementation 2020-09-28T14:40:05Z 2020-09-28T14:40:05Z 2020 Статья Boyvalenkov, P., Chervyakov, N.I., Lyakhov, P., Semyonova, N., Nazarov, A., Valueva, M., Boyvalenkov, G., Bogaevskiy, D., Kaplun, D. Classification of moduli sets for residue number system with special diagonal functions // IEEE Access. - 2020. - Volume 8. - Номер статьи 9177128. - Pages 156104-156116 http://hdl.handle.net/20.500.12258/14198 en IEEE Access application/pdf application/pdf Institute of Electrical and Electronics Engineers Inc.
institution СКФУ
collection Репозиторий
language English
topic Average bit-width
Diagonal Function (DF)
FPGA
Hardware implementation
Non-modular operations
Quadruples
Residue number system (RNS)
RNS balance
Computer hardware
spellingShingle Average bit-width
Diagonal Function (DF)
FPGA
Hardware implementation
Non-modular operations
Quadruples
Residue number system (RNS)
RNS balance
Computer hardware
Chervyakov, N. I.
Червяков, Н. И.
Lyakhov, P. A.
Ляхов, П. А.
Semyonova, N. F.
Семенова, Н. Ф.
Nazarov, A. S.
Назаров, А. С.
Valueva, M. V.
Валуева, М. В.
Classification of moduli sets for residue number system with special diagonal functions
description The paper presents algorithms for the generation of Residue Number System (RNS) triples with SQ=2k-1 and quadruples with SQ=2k for some k. Triples and quadruples allow us to design efficient hardware implementations of non-modular operations in RNS such as division, sign detection, comparison of numbers, reverse conversion with using of a diagonal function from requiring division with the remainder by the diagonal module SQ. Division with a remainder in the general case is the most complex arithmetic operation in computer technology. However, the consideration of special cases can significantly simplify this operation and increase the efficiency of hardware implementation. We show that there are 5573 good RNS triples (2301 even and 2372 odd) with elements less than 10 000, as the values of SQ vary from 25-1 to 227-1. In contrast, RNS quadruples with SQ=2k seem to be quite rare. Restricting our search to sums of the elements in a quadruple less than 4000 we find that exactly 31 such quadruples exist. Their values of SQ vary between 220 and 230 with always even exponent. We suggest the measure of RNS balance and find perfectly balanced RNS among triples according to this measure. We demonstrate the advantages of more balanced quadruples by means of hardware implementation
format Статья
author Chervyakov, N. I.
Червяков, Н. И.
Lyakhov, P. A.
Ляхов, П. А.
Semyonova, N. F.
Семенова, Н. Ф.
Nazarov, A. S.
Назаров, А. С.
Valueva, M. V.
Валуева, М. В.
author_facet Chervyakov, N. I.
Червяков, Н. И.
Lyakhov, P. A.
Ляхов, П. А.
Semyonova, N. F.
Семенова, Н. Ф.
Nazarov, A. S.
Назаров, А. С.
Valueva, M. V.
Валуева, М. В.
author_sort Chervyakov, N. I.
title Classification of moduli sets for residue number system with special diagonal functions
title_short Classification of moduli sets for residue number system with special diagonal functions
title_full Classification of moduli sets for residue number system with special diagonal functions
title_fullStr Classification of moduli sets for residue number system with special diagonal functions
title_full_unstemmed Classification of moduli sets for residue number system with special diagonal functions
title_sort classification of moduli sets for residue number system with special diagonal functions
publisher Institute of Electrical and Electronics Engineers Inc.
publishDate 2020
url https://dspace.ncfu.ru/handle/20.500.12258/14198
work_keys_str_mv AT chervyakovni classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions
AT červâkovni classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions
AT lyakhovpa classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions
AT lâhovpa classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions
AT semyonovanf classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions
AT semenovanf classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions
AT nazarovas classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions
AT nazarovas classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions
AT valuevamv classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions
AT valuevamv classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions
_version_ 1760601615743582208