Classification of moduli sets for residue number system with special diagonal functions
The paper presents algorithms for the generation of Residue Number System (RNS) triples with SQ=2k-1 and quadruples with SQ=2k for some k. Triples and quadruples allow us to design efficient hardware implementations of non-modular operations in RNS such as division, sign detection, comparison of num...
שמור ב:
Главные авторы: | , , , , , , , , , |
---|---|
פורמט: | Статья |
שפה: | English |
יצא לאור: |
Institute of Electrical and Electronics Engineers Inc.
2020
|
נושאים: | |
גישה מקוונת: | https://dspace.ncfu.ru/handle/20.500.12258/14198 |
תגים: |
הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
|
id |
ir-20.500.12258-14198 |
---|---|
record_format |
dspace |
spelling |
ir-20.500.12258-141982020-09-28T14:41:34Z Classification of moduli sets for residue number system with special diagonal functions Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Semyonova, N. F. Семенова, Н. Ф. Nazarov, A. S. Назаров, А. С. Valueva, M. V. Валуева, М. В. Average bit-width Diagonal Function (DF) FPGA Hardware implementation Non-modular operations Quadruples Residue number system (RNS) RNS balance Computer hardware The paper presents algorithms for the generation of Residue Number System (RNS) triples with SQ=2k-1 and quadruples with SQ=2k for some k. Triples and quadruples allow us to design efficient hardware implementations of non-modular operations in RNS such as division, sign detection, comparison of numbers, reverse conversion with using of a diagonal function from requiring division with the remainder by the diagonal module SQ. Division with a remainder in the general case is the most complex arithmetic operation in computer technology. However, the consideration of special cases can significantly simplify this operation and increase the efficiency of hardware implementation. We show that there are 5573 good RNS triples (2301 even and 2372 odd) with elements less than 10 000, as the values of SQ vary from 25-1 to 227-1. In contrast, RNS quadruples with SQ=2k seem to be quite rare. Restricting our search to sums of the elements in a quadruple less than 4000 we find that exactly 31 such quadruples exist. Their values of SQ vary between 220 and 230 with always even exponent. We suggest the measure of RNS balance and find perfectly balanced RNS among triples according to this measure. We demonstrate the advantages of more balanced quadruples by means of hardware implementation 2020-09-28T14:40:05Z 2020-09-28T14:40:05Z 2020 Статья Boyvalenkov, P., Chervyakov, N.I., Lyakhov, P., Semyonova, N., Nazarov, A., Valueva, M., Boyvalenkov, G., Bogaevskiy, D., Kaplun, D. Classification of moduli sets for residue number system with special diagonal functions // IEEE Access. - 2020. - Volume 8. - Номер статьи 9177128. - Pages 156104-156116 http://hdl.handle.net/20.500.12258/14198 en IEEE Access application/pdf application/pdf Institute of Electrical and Electronics Engineers Inc. |
institution |
СКФУ |
collection |
Репозиторий |
language |
English |
topic |
Average bit-width Diagonal Function (DF) FPGA Hardware implementation Non-modular operations Quadruples Residue number system (RNS) RNS balance Computer hardware |
spellingShingle |
Average bit-width Diagonal Function (DF) FPGA Hardware implementation Non-modular operations Quadruples Residue number system (RNS) RNS balance Computer hardware Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Semyonova, N. F. Семенова, Н. Ф. Nazarov, A. S. Назаров, А. С. Valueva, M. V. Валуева, М. В. Classification of moduli sets for residue number system with special diagonal functions |
description |
The paper presents algorithms for the generation of Residue Number System (RNS) triples with SQ=2k-1 and quadruples with SQ=2k for some k. Triples and quadruples allow us to design efficient hardware implementations of non-modular operations in RNS such as division, sign detection, comparison of numbers, reverse conversion with using of a diagonal function from requiring division with the remainder by the diagonal module SQ. Division with a remainder in the general case is the most complex arithmetic operation in computer technology. However, the consideration of special cases can significantly simplify this operation and increase the efficiency of hardware implementation. We show that there are 5573 good RNS triples (2301 even and 2372 odd) with elements less than 10 000, as the values of SQ vary from 25-1 to 227-1. In contrast, RNS quadruples with SQ=2k seem to be quite rare. Restricting our search to sums of the elements in a quadruple less than 4000 we find that exactly 31 such quadruples exist. Their values of SQ vary between 220 and 230 with always even exponent. We suggest the measure of RNS balance and find perfectly balanced RNS among triples according to this measure. We demonstrate the advantages of more balanced quadruples by means of hardware implementation |
format |
Статья |
author |
Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Semyonova, N. F. Семенова, Н. Ф. Nazarov, A. S. Назаров, А. С. Valueva, M. V. Валуева, М. В. |
author_facet |
Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Semyonova, N. F. Семенова, Н. Ф. Nazarov, A. S. Назаров, А. С. Valueva, M. V. Валуева, М. В. |
author_sort |
Chervyakov, N. I. |
title |
Classification of moduli sets for residue number system with special diagonal functions |
title_short |
Classification of moduli sets for residue number system with special diagonal functions |
title_full |
Classification of moduli sets for residue number system with special diagonal functions |
title_fullStr |
Classification of moduli sets for residue number system with special diagonal functions |
title_full_unstemmed |
Classification of moduli sets for residue number system with special diagonal functions |
title_sort |
classification of moduli sets for residue number system with special diagonal functions |
publisher |
Institute of Electrical and Electronics Engineers Inc. |
publishDate |
2020 |
url |
https://dspace.ncfu.ru/handle/20.500.12258/14198 |
work_keys_str_mv |
AT chervyakovni classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions AT červâkovni classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions AT lyakhovpa classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions AT lâhovpa classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions AT semyonovanf classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions AT semenovanf classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions AT nazarovas classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions AT nazarovas classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions AT valuevamv classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions AT valuevamv classificationofmodulisetsforresiduenumbersystemwithspecialdiagonalfunctions |
_version_ |
1760601615743582208 |