इसे छोड़कर सामग्री पर बढ़ने के लिए

Optimization of computational complexity of an artificial neural network

The article deals with the modelling of Artificial Neural Networks as an information transmission system to optimize their computational complexity. The analysis of existing theoretical approaches to optimizing the structure and training of neural networks is carried out. In the process of construct...

पूर्ण विवरण

में बचाया:
ग्रंथसूची विवरण
मुख्य लेखकों: Vershkov, N. A., Вершков, Н. А., Kuchukov, V. A., Кучуков, В. А., Kuchukova, N. N., Кучукова, Н. Н., Kucherov, N. N., Кучеров, Н. Н., Shiriaev, E. M., Ширяев, Е. М.
स्वरूप: Статья
भाषा:English
प्रकाशित: CEUR-WS 2021
विषय:
ऑनलाइन पहुंच:https://dspace.ncfu.ru/handle/20.500.12258/18054
टैग : टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!
id ir-20.500.12258-18054
record_format dspace
spelling ir-20.500.12258-180542021-09-01T09:20:38Z Optimization of computational complexity of an artificial neural network Vershkov, N. A. Вершков, Н. А. Kuchukov, V. A. Кучуков, В. А. Kuchukova, N. N. Кучукова, Н. Н. Kucherov, N. N. Кучеров, Н. Н. Shiriaev, E. M. Ширяев, Е. М. Mathematical transformations Network layers Complex networks Computational complexity Control systems Information filtering Multilayer neural networks The article deals with the modelling of Artificial Neural Networks as an information transmission system to optimize their computational complexity. The analysis of existing theoretical approaches to optimizing the structure and training of neural networks is carried out. In the process of constructing the model, the well-known problem of isolating a deterministic signal on the background of noise and adapting it to solving the problem of assigning an input implementation to a certain cluster is considered. A layer of neurons is considered as an information transformer with a kernel for solving a certain class of problems: orthogonal transformation, matched filtering, and nonlinear transformation for recognizing the input implementation with a given accuracy. Based on the analysis of the proposed model, it is concluded that it is possible to reduce the number of neurons in the layers of neural network and to reduce the number of features for training the classifier 2021-09-01T09:18:32Z 2021-09-01T09:18:32Z 2021 Статья Vershkov N. А., Kuchukov V. A., Kuchukova N. N., Kucherov N. N., Shiriaev E. M. Optimization of computational complexity of an artificial neural network // CEUR Workshop Proceedings. - 2021. - Том 2913. - Стр. 220 - 226 http://hdl.handle.net/20.500.12258/18054 en CEUR Workshop Proceedings application/pdf CEUR-WS
institution СКФУ
collection Репозиторий
language English
topic Mathematical transformations
Network layers
Complex networks
Computational complexity
Control systems
Information filtering
Multilayer neural networks
spellingShingle Mathematical transformations
Network layers
Complex networks
Computational complexity
Control systems
Information filtering
Multilayer neural networks
Vershkov, N. A.
Вершков, Н. А.
Kuchukov, V. A.
Кучуков, В. А.
Kuchukova, N. N.
Кучукова, Н. Н.
Kucherov, N. N.
Кучеров, Н. Н.
Shiriaev, E. M.
Ширяев, Е. М.
Optimization of computational complexity of an artificial neural network
description The article deals with the modelling of Artificial Neural Networks as an information transmission system to optimize their computational complexity. The analysis of existing theoretical approaches to optimizing the structure and training of neural networks is carried out. In the process of constructing the model, the well-known problem of isolating a deterministic signal on the background of noise and adapting it to solving the problem of assigning an input implementation to a certain cluster is considered. A layer of neurons is considered as an information transformer with a kernel for solving a certain class of problems: orthogonal transformation, matched filtering, and nonlinear transformation for recognizing the input implementation with a given accuracy. Based on the analysis of the proposed model, it is concluded that it is possible to reduce the number of neurons in the layers of neural network and to reduce the number of features for training the classifier
format Статья
author Vershkov, N. A.
Вершков, Н. А.
Kuchukov, V. A.
Кучуков, В. А.
Kuchukova, N. N.
Кучукова, Н. Н.
Kucherov, N. N.
Кучеров, Н. Н.
Shiriaev, E. M.
Ширяев, Е. М.
author_facet Vershkov, N. A.
Вершков, Н. А.
Kuchukov, V. A.
Кучуков, В. А.
Kuchukova, N. N.
Кучукова, Н. Н.
Kucherov, N. N.
Кучеров, Н. Н.
Shiriaev, E. M.
Ширяев, Е. М.
author_sort Vershkov, N. A.
title Optimization of computational complexity of an artificial neural network
title_short Optimization of computational complexity of an artificial neural network
title_full Optimization of computational complexity of an artificial neural network
title_fullStr Optimization of computational complexity of an artificial neural network
title_full_unstemmed Optimization of computational complexity of an artificial neural network
title_sort optimization of computational complexity of an artificial neural network
publisher CEUR-WS
publishDate 2021
url https://dspace.ncfu.ru/handle/20.500.12258/18054
work_keys_str_mv AT vershkovna optimizationofcomputationalcomplexityofanartificialneuralnetwork
AT verškovna optimizationofcomputationalcomplexityofanartificialneuralnetwork
AT kuchukovva optimizationofcomputationalcomplexityofanartificialneuralnetwork
AT kučukovva optimizationofcomputationalcomplexityofanartificialneuralnetwork
AT kuchukovann optimizationofcomputationalcomplexityofanartificialneuralnetwork
AT kučukovann optimizationofcomputationalcomplexityofanartificialneuralnetwork
AT kucherovnn optimizationofcomputationalcomplexityofanartificialneuralnetwork
AT kučerovnn optimizationofcomputationalcomplexityofanartificialneuralnetwork
AT shiriaevem optimizationofcomputationalcomplexityofanartificialneuralnetwork
AT širâevem optimizationofcomputationalcomplexityofanartificialneuralnetwork
_version_ 1760601856065667072