Пропуск в контексте

Stable numerical schemes for time-fractional diffusion equation with generalized memory kernel

The paper aims to develop the stable numerical schemes for generalized time-fractional diffusion equations (GTFDEs) with smooth and non-smooth solutions on the non-uniform grid. In time, the generalized Caputo derivative is discretized by a difference scheme of order (2−α) on a non-uniform grid wher...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Alikhanov, A. A., Алиханов, А. А.
Формат: Статья
Язык:English
Опубликовано: Elsevier B.V. 2021
Темы:
Online-ссылка:https://dspace.ncfu.ru/handle/20.500.12258/18326
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
Описание
Краткое описание:The paper aims to develop the stable numerical schemes for generalized time-fractional diffusion equations (GTFDEs) with smooth and non-smooth solutions on the non-uniform grid. In time, the generalized Caputo derivative is discretized by a difference scheme of order (2−α) on a non-uniform grid where 0<α<1. Choosing the non-uniform meshes in the case of the smooth and non-smooth solution is also essential, so we graded the mesh in both cases separately. Stability and convergence for smooth as well as non-smooth solutions are obtained in L2-norm and L∞-norm respectively. Several numerical results are presented to show how the grading of meshes is essential. Also, numerical results validate the efficiency and effectiveness of proposed schemes and show how a non-uniform grid produces better results.