Stable numerical schemes for time-fractional diffusion equation with generalized memory kernel
The paper aims to develop the stable numerical schemes for generalized time-fractional diffusion equations (GTFDEs) with smooth and non-smooth solutions on the non-uniform grid. In time, the generalized Caputo derivative is discretized by a difference scheme of order (2−α) on a non-uniform grid wher...
Сохранить в:
| Главные авторы: | Alikhanov, A. A., Алиханов, А. А. |
|---|---|
| Формат: | Статья |
| Язык: | English |
| Опубликовано: |
Elsevier B.V.
2021
|
| Темы: | |
| Online-ссылка: | https://dspace.ncfu.ru/handle/20.500.12258/18326 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Схожие документы
-
A novel explicit fast numerical scheme for the Cauchy problem for integro-differential equations with a difference kernel and its application
Автор: Alikhanov, A. A., и др.
Опубликовано: (2024) -
Numerical method for fractional sub-diffusion equation with space–time varying diffusivity and smooth solution
Автор: Alikhanov, A. A., и др.
Опубликовано: (2025) -
Online Meshfree Generalized Multiscale Finite Element Method for Flows in Fractured Media
Автор: Stepanov, S. P., и др.
Опубликовано: (2025) -
A high-order compact difference scheme for the multi-term time-fractional Sobolev-type convection-diffusion equation
Автор: Alikhanov, A. A., и др.
Опубликовано: (2025) -
Locally One-Dimensional Scheme for the Distribution Function Equation by Ice Particle Masses Considering the Interaction of Droplets and Crystals
Автор: Khibiev, A. H., и др.
Опубликовано: (2025)