Multi-cloud privacy-preserving logistic regression
Clouds can significantly reduce the cost and time of business solutions. However, cloud services introduce significant security and privacy challenges when they process sensitive information. For instance, a dataset for machine learning could contain delicate information that traditional encryption...
Uloženo v:
Hlavní autoři: | Babenko, M. G., Бабенко, М. Г. |
---|---|
Médium: | Статья |
Jazyk: | English |
Vydáno: |
Springer Science and Business Media Deutschland GmbH
2022
|
Témata: | |
On-line přístup: | https://dspace.ncfu.ru/handle/20.500.12258/18617 |
Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|
Podobné jednotky
-
LR-GD-RNS: Enhanced privacy-preserving logistic regression algorithms for secure deployment in untrusted environments
Autor: Babenko, M. G., a další
Vydáno: (2021) -
Privacy-preserving logistic regression as a cloud service based on residue number system
Autor: Babenko, M. G., a další
Vydáno: (2021) -
Privacy-preserving neural networks with Homomorphic encryption: Challenges and opportunities
Autor: Babenko, M. G., a další
Vydáno: (2021) -
A survey on privacy-preserving machine learning with fully homomorphic encryption
Autor: Babenko, M. G., a další
Vydáno: (2021) -
A survey on multi-cloud storage security: threats and countermeasures
Autor: Bezuglova, E. S., a další
Vydáno: (2023)