Multi-cloud privacy-preserving logistic regression
Clouds can significantly reduce the cost and time of business solutions. However, cloud services introduce significant security and privacy challenges when they process sensitive information. For instance, a dataset for machine learning could contain delicate information that traditional encryption...
में बचाया:
मुख्य लेखकों: | Babenko, M. G., Бабенко, М. Г. |
---|---|
स्वरूप: | Статья |
भाषा: | English |
प्रकाशित: |
Springer Science and Business Media Deutschland GmbH
2022
|
विषय: | |
ऑनलाइन पहुंच: | https://dspace.ncfu.ru/handle/20.500.12258/18617 |
टैग : |
टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!
|
समान संसाधन
-
LR-GD-RNS: Enhanced privacy-preserving logistic regression algorithms for secure deployment in untrusted environments
द्वारा: Babenko, M. G., और अन्य
प्रकाशित: (2021) -
Privacy-preserving logistic regression as a cloud service based on residue number system
द्वारा: Babenko, M. G., और अन्य
प्रकाशित: (2021) -
Privacy-preserving neural networks with Homomorphic encryption: Challenges and opportunities
द्वारा: Babenko, M. G., और अन्य
प्रकाशित: (2021) -
A survey on privacy-preserving machine learning with fully homomorphic encryption
द्वारा: Babenko, M. G., और अन्य
प्रकाशित: (2021) -
A survey on multi-cloud storage security: threats and countermeasures
द्वारा: Bezuglova, E. S., और अन्य
प्रकाशित: (2023)