Multi-cloud privacy-preserving logistic regression
Clouds can significantly reduce the cost and time of business solutions. However, cloud services introduce significant security and privacy challenges when they process sensitive information. For instance, a dataset for machine learning could contain delicate information that traditional encryption...
保存先:
主要な著者: | Babenko, M. G., Бабенко, М. Г. |
---|---|
フォーマット: | Статья |
言語: | English |
出版事項: |
Springer Science and Business Media Deutschland GmbH
2022
|
主題: | |
オンライン・アクセス: | https://dspace.ncfu.ru/handle/20.500.12258/18617 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
LR-GD-RNS: Enhanced privacy-preserving logistic regression algorithms for secure deployment in untrusted environments
著者:: Babenko, M. G., 等
出版事項: (2021) -
Privacy-preserving logistic regression as a cloud service based on residue number system
著者:: Babenko, M. G., 等
出版事項: (2021) -
Privacy-preserving neural networks with Homomorphic encryption: Challenges and opportunities
著者:: Babenko, M. G., 等
出版事項: (2021) -
A survey on privacy-preserving machine learning with fully homomorphic encryption
著者:: Babenko, M. G., 等
出版事項: (2021) -
A survey on multi-cloud storage security: threats and countermeasures
著者:: Bezuglova, E. S., 等
出版事項: (2023)