Multi-cloud privacy-preserving logistic regression
Clouds can significantly reduce the cost and time of business solutions. However, cloud services introduce significant security and privacy challenges when they process sensitive information. For instance, a dataset for machine learning could contain delicate information that traditional encryption...
Kaydedildi:
Asıl Yazarlar: | Babenko, M. G., Бабенко, М. Г. |
---|---|
Materyal Türü: | Статья |
Dil: | English |
Baskı/Yayın Bilgisi: |
Springer Science and Business Media Deutschland GmbH
2022
|
Konular: | |
Online Erişim: | https://dspace.ncfu.ru/handle/20.500.12258/18617 |
Etiketler: |
Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
|
Benzer Materyaller
-
LR-GD-RNS: Enhanced privacy-preserving logistic regression algorithms for secure deployment in untrusted environments
Yazar:: Babenko, M. G., ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
Privacy-preserving logistic regression as a cloud service based on residue number system
Yazar:: Babenko, M. G., ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
Privacy-preserving neural networks with Homomorphic encryption: Challenges and opportunities
Yazar:: Babenko, M. G., ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
A survey on privacy-preserving machine learning with fully homomorphic encryption
Yazar:: Babenko, M. G., ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
A survey on multi-cloud storage security: threats and countermeasures
Yazar:: Bezuglova, E. S., ve diğerleri
Baskı/Yayın Bilgisi: (2023)