Neural network analysis for image classification
The article considers the possibility of modeling artificial neural networks using the mathematical apparatus of information theory. The issues of pattern recognition, classification and clustering of images using neural networks are represented by two main architectures: a direct distribution netwo...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Статья |
Sprache: | English |
Veröffentlicht: |
Springer Science and Business Media Deutschland GmbH
2022
|
Schlagworte: | |
Online Zugang: | https://dspace.ncfu.ru/handle/20.500.12258/19612 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
id |
ir-20.500.12258-19612 |
---|---|
record_format |
dspace |
spelling |
ir-20.500.12258-196122022-05-26T07:16:11Z Neural network analysis for image classification Vershkov, N. A. Вершков, Н. А. Babenko, M. G. Бабенко, М. Г. Kuchukov, V. A. Кучуков, В. А. Kuchukova, N. N. Кучукова, Н. Н. Convolutional neural networks Neural networks Sub-band coding Sub-band filtering Wave model The article considers the possibility of modeling artificial neural networks using the mathematical apparatus of information theory. The issues of pattern recognition, classification and clustering of images using neural networks are represented by two main architectures: a direct distribution network and convolutional networks. The possibility of using orthogonal transformations to increase the efficiency of neural networks, the use of wavelet transformations in convolutional networks is investigated. Based on the theoretical studies carried out, the directions on practical application of the obtained results are proposed. 2022-05-26T07:15:06Z 2022-05-26T07:15:06Z 2022 Статья Vershkov N. A., Babenko M. G., Kuchukov V. A., Kuchukova N. N. Neural network analysis for image classification // Lecture Notes in Networks and Systems. - 2022. - Том 424. - Стр.: 455 - 466. - DOI10.1007/978-3-030-97020-8_41 http://hdl.handle.net/20.500.12258/19612 en Lecture Notes in Networks and Systems application/pdf Springer Science and Business Media Deutschland GmbH |
institution |
СКФУ |
collection |
Репозиторий |
language |
English |
topic |
Convolutional neural networks Neural networks Sub-band coding Sub-band filtering Wave model |
spellingShingle |
Convolutional neural networks Neural networks Sub-band coding Sub-band filtering Wave model Vershkov, N. A. Вершков, Н. А. Babenko, M. G. Бабенко, М. Г. Kuchukov, V. A. Кучуков, В. А. Kuchukova, N. N. Кучукова, Н. Н. Neural network analysis for image classification |
description |
The article considers the possibility of modeling artificial neural networks using the mathematical apparatus of information theory. The issues of pattern recognition, classification and clustering of images using neural networks are represented by two main architectures: a direct distribution network and convolutional networks. The possibility of using orthogonal transformations to increase the efficiency of neural networks, the use of wavelet transformations in convolutional networks is investigated. Based on the theoretical studies carried out, the directions on practical application of the obtained results are proposed. |
format |
Статья |
author |
Vershkov, N. A. Вершков, Н. А. Babenko, M. G. Бабенко, М. Г. Kuchukov, V. A. Кучуков, В. А. Kuchukova, N. N. Кучукова, Н. Н. |
author_facet |
Vershkov, N. A. Вершков, Н. А. Babenko, M. G. Бабенко, М. Г. Kuchukov, V. A. Кучуков, В. А. Kuchukova, N. N. Кучукова, Н. Н. |
author_sort |
Vershkov, N. A. |
title |
Neural network analysis for image classification |
title_short |
Neural network analysis for image classification |
title_full |
Neural network analysis for image classification |
title_fullStr |
Neural network analysis for image classification |
title_full_unstemmed |
Neural network analysis for image classification |
title_sort |
neural network analysis for image classification |
publisher |
Springer Science and Business Media Deutschland GmbH |
publishDate |
2022 |
url |
https://dspace.ncfu.ru/handle/20.500.12258/19612 |
work_keys_str_mv |
AT vershkovna neuralnetworkanalysisforimageclassification AT verškovna neuralnetworkanalysisforimageclassification AT babenkomg neuralnetworkanalysisforimageclassification AT babenkomg neuralnetworkanalysisforimageclassification AT kuchukovva neuralnetworkanalysisforimageclassification AT kučukovva neuralnetworkanalysisforimageclassification AT kuchukovann neuralnetworkanalysisforimageclassification AT kučukovann neuralnetworkanalysisforimageclassification |
_version_ |
1760601643009703936 |