Modeling hyperchaotic datasets for neural networks
This work is aimed at the studies related to neurocryptography. The paper represents the studies of hyperchaotic mappings and their construction based on the attractors and the research of image noise characteristics using the attractors and their performance. The conducted experiments have demonstr...
में बचाया:
मुख्य लेखकों: | , , , , , , , |
---|---|
स्वरूप: | Статья |
भाषा: | English |
प्रकाशित: |
Springer Science and Business Media Deutschland GmbH
2022
|
विषय: | |
ऑनलाइन पहुंच: | https://dspace.ncfu.ru/handle/20.500.12258/19639 |
टैग : |
टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!
|
id |
ir-20.500.12258-19639 |
---|---|
record_format |
dspace |
spelling |
ir-20.500.12258-196392022-05-31T09:53:01Z Modeling hyperchaotic datasets for neural networks Shiriaev, E. M. Ширяев, Е. М. Bezuglova, E. S. Безуглова, Е. С. Kucherov, N. N. Кучеров, Н. Н. Valuev, G. V. Валуев, Г. В. Chaos theory Saito generator Ressler attractor Neurocryptography Hyperchaos Liapunov generator Lorentz attractor This work is aimed at the studies related to neurocryptography. The paper represents the studies of hyperchaotic mappings and their construction based on the attractors and the research of image noise characteristics using the attractors and their performance. The conducted experiments have demonstrated that Liapunov hyperchaos generator possesses the best performance ratio and noise characteristics. In prospect we are going to conduct the experiments with a compiled data set and neural networks focused on the work with chaotic models and cryptographic algorithms. 2022-05-31T09:52:14Z 2022-05-31T09:52:14Z 2022 Статья Shiriaev, E., Bezuglova, E., Kucherov, N., Valuev, G. Modeling hyperchaotic datasets for neural networks // Lecture Notes in Networks and Systems. - 2022. - Том 424. - Стр.: 441 - 453. - DOI10.1007/978-3-030-97020-8_40 http://hdl.handle.net/20.500.12258/19639 en Lecture Notes in Networks and Systems application/pdf Springer Science and Business Media Deutschland GmbH |
institution |
СКФУ |
collection |
Репозиторий |
language |
English |
topic |
Chaos theory Saito generator Ressler attractor Neurocryptography Hyperchaos Liapunov generator Lorentz attractor |
spellingShingle |
Chaos theory Saito generator Ressler attractor Neurocryptography Hyperchaos Liapunov generator Lorentz attractor Shiriaev, E. M. Ширяев, Е. М. Bezuglova, E. S. Безуглова, Е. С. Kucherov, N. N. Кучеров, Н. Н. Valuev, G. V. Валуев, Г. В. Modeling hyperchaotic datasets for neural networks |
description |
This work is aimed at the studies related to neurocryptography. The paper represents the studies of hyperchaotic mappings and their construction based on the attractors and the research of image noise characteristics using the attractors and their performance. The conducted experiments have demonstrated that Liapunov hyperchaos generator possesses the best performance ratio and noise characteristics. In prospect we are going to conduct the experiments with a compiled data set and neural networks focused on the work with chaotic models and cryptographic algorithms. |
format |
Статья |
author |
Shiriaev, E. M. Ширяев, Е. М. Bezuglova, E. S. Безуглова, Е. С. Kucherov, N. N. Кучеров, Н. Н. Valuev, G. V. Валуев, Г. В. |
author_facet |
Shiriaev, E. M. Ширяев, Е. М. Bezuglova, E. S. Безуглова, Е. С. Kucherov, N. N. Кучеров, Н. Н. Valuev, G. V. Валуев, Г. В. |
author_sort |
Shiriaev, E. M. |
title |
Modeling hyperchaotic datasets for neural networks |
title_short |
Modeling hyperchaotic datasets for neural networks |
title_full |
Modeling hyperchaotic datasets for neural networks |
title_fullStr |
Modeling hyperchaotic datasets for neural networks |
title_full_unstemmed |
Modeling hyperchaotic datasets for neural networks |
title_sort |
modeling hyperchaotic datasets for neural networks |
publisher |
Springer Science and Business Media Deutschland GmbH |
publishDate |
2022 |
url |
https://dspace.ncfu.ru/handle/20.500.12258/19639 |
work_keys_str_mv |
AT shiriaevem modelinghyperchaoticdatasetsforneuralnetworks AT širâevem modelinghyperchaoticdatasetsforneuralnetworks AT bezuglovaes modelinghyperchaoticdatasetsforneuralnetworks AT bezuglovaes modelinghyperchaoticdatasetsforneuralnetworks AT kucherovnn modelinghyperchaoticdatasetsforneuralnetworks AT kučerovnn modelinghyperchaoticdatasetsforneuralnetworks AT valuevgv modelinghyperchaoticdatasetsforneuralnetworks AT valuevgv modelinghyperchaoticdatasetsforneuralnetworks |
_version_ |
1760599223686922240 |