इसे छोड़कर सामग्री पर बढ़ने के लिए

Modeling hyperchaotic datasets for neural networks

This work is aimed at the studies related to neurocryptography. The paper represents the studies of hyperchaotic mappings and their construction based on the attractors and the research of image noise characteristics using the attractors and their performance. The conducted experiments have demonstr...

पूर्ण विवरण

में बचाया:
ग्रंथसूची विवरण
मुख्य लेखकों: Shiriaev, E. M., Ширяев, Е. М., Bezuglova, E. S., Безуглова, Е. С., Kucherov, N. N., Кучеров, Н. Н., Valuev, G. V., Валуев, Г. В.
स्वरूप: Статья
भाषा:English
प्रकाशित: Springer Science and Business Media Deutschland GmbH 2022
विषय:
ऑनलाइन पहुंच:https://dspace.ncfu.ru/handle/20.500.12258/19639
टैग : टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!
id ir-20.500.12258-19639
record_format dspace
spelling ir-20.500.12258-196392022-05-31T09:53:01Z Modeling hyperchaotic datasets for neural networks Shiriaev, E. M. Ширяев, Е. М. Bezuglova, E. S. Безуглова, Е. С. Kucherov, N. N. Кучеров, Н. Н. Valuev, G. V. Валуев, Г. В. Chaos theory Saito generator Ressler attractor Neurocryptography Hyperchaos Liapunov generator Lorentz attractor This work is aimed at the studies related to neurocryptography. The paper represents the studies of hyperchaotic mappings and their construction based on the attractors and the research of image noise characteristics using the attractors and their performance. The conducted experiments have demonstrated that Liapunov hyperchaos generator possesses the best performance ratio and noise characteristics. In prospect we are going to conduct the experiments with a compiled data set and neural networks focused on the work with chaotic models and cryptographic algorithms. 2022-05-31T09:52:14Z 2022-05-31T09:52:14Z 2022 Статья Shiriaev, E., Bezuglova, E., Kucherov, N., Valuev, G. Modeling hyperchaotic datasets for neural networks // Lecture Notes in Networks and Systems. - 2022. - Том 424. - Стр.: 441 - 453. - DOI10.1007/978-3-030-97020-8_40 http://hdl.handle.net/20.500.12258/19639 en Lecture Notes in Networks and Systems application/pdf Springer Science and Business Media Deutschland GmbH
institution СКФУ
collection Репозиторий
language English
topic Chaos theory
Saito generator
Ressler attractor
Neurocryptography
Hyperchaos
Liapunov generator
Lorentz attractor
spellingShingle Chaos theory
Saito generator
Ressler attractor
Neurocryptography
Hyperchaos
Liapunov generator
Lorentz attractor
Shiriaev, E. M.
Ширяев, Е. М.
Bezuglova, E. S.
Безуглова, Е. С.
Kucherov, N. N.
Кучеров, Н. Н.
Valuev, G. V.
Валуев, Г. В.
Modeling hyperchaotic datasets for neural networks
description This work is aimed at the studies related to neurocryptography. The paper represents the studies of hyperchaotic mappings and their construction based on the attractors and the research of image noise characteristics using the attractors and their performance. The conducted experiments have demonstrated that Liapunov hyperchaos generator possesses the best performance ratio and noise characteristics. In prospect we are going to conduct the experiments with a compiled data set and neural networks focused on the work with chaotic models and cryptographic algorithms.
format Статья
author Shiriaev, E. M.
Ширяев, Е. М.
Bezuglova, E. S.
Безуглова, Е. С.
Kucherov, N. N.
Кучеров, Н. Н.
Valuev, G. V.
Валуев, Г. В.
author_facet Shiriaev, E. M.
Ширяев, Е. М.
Bezuglova, E. S.
Безуглова, Е. С.
Kucherov, N. N.
Кучеров, Н. Н.
Valuev, G. V.
Валуев, Г. В.
author_sort Shiriaev, E. M.
title Modeling hyperchaotic datasets for neural networks
title_short Modeling hyperchaotic datasets for neural networks
title_full Modeling hyperchaotic datasets for neural networks
title_fullStr Modeling hyperchaotic datasets for neural networks
title_full_unstemmed Modeling hyperchaotic datasets for neural networks
title_sort modeling hyperchaotic datasets for neural networks
publisher Springer Science and Business Media Deutschland GmbH
publishDate 2022
url https://dspace.ncfu.ru/handle/20.500.12258/19639
work_keys_str_mv AT shiriaevem modelinghyperchaoticdatasetsforneuralnetworks
AT širâevem modelinghyperchaoticdatasetsforneuralnetworks
AT bezuglovaes modelinghyperchaoticdatasetsforneuralnetworks
AT bezuglovaes modelinghyperchaoticdatasetsforneuralnetworks
AT kucherovnn modelinghyperchaoticdatasetsforneuralnetworks
AT kučerovnn modelinghyperchaoticdatasetsforneuralnetworks
AT valuevgv modelinghyperchaoticdatasetsforneuralnetworks
AT valuevgv modelinghyperchaoticdatasetsforneuralnetworks
_version_ 1760599223686922240