Hoppa till innehåll

A new model to optimize the architecture of a fault-tolerant modular neurocomputer

In this paper, we present some results on error detection and correction in a modular neurocomputer that are based on redundant residue number systems. The error correction method developed below involves the modified Chinese Remainder Theorem with fractions and uses a Hopfield neural network to cor...

Full beskrivning

Sparad:
Bibliografiska uppgifter
Huvudupphovsmän: Chervyakov, N. I., Червяков, Н. И., Lyakhov, P. A., Ляхов, П. А., Babenko, M. G., Бабенко, М. Г., Lavrinenko, I. N., Лавриненко, И. Н., Lavrinenko, A. V., Лавриненко, А. В., Deryabin, M. A., Дерябин, М. А., Nazarov, A. S., Назаров, А. С.
Materialtyp: Статья
Språk:English
Publicerad: Elsevier B.V. 2018
Ämnen:
Länkar:https://www.scopus.com/record/display.uri?eid=2-s2.0-85046691005&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=66c0b1a32aef918b6dc8f22f4ab4e9b7&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=0&citeCnt=0&searchTerm=
https://dspace.ncfu.ru:443/handle/20.500.12258/220
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!
id ir-20.500.12258-220
record_format dspace
spelling ir-20.500.12258-2202020-07-10T08:48:39Z A new model to optimize the architecture of a fault-tolerant modular neurocomputer Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Babenko, M. G. Бабенко, М. Г. Lavrinenko, I. N. Лавриненко, И. Н. Lavrinenko, A. V. Лавриненко, А. В. Deryabin, M. A. Дерябин, М. А. Nazarov, A. S. Назаров, А. С. Digital neuron Hopfield neural network Modular neurocomputer Residue number system (RNS) Very large scale integrated (VLSI) circuit In this paper, we present some results on error detection and correction in a modular neurocomputer that are based on redundant residue number systems. The error correction method developed below involves the modified Chinese Remainder Theorem with fractions and uses a Hopfield neural network to correct the errors. The suggested approach eliminates the need for extending the bases of a residue number system, a costly operation required in case of syndrome decoding with error syndromes calculation on the control bases of the system. Also the approach does not utilize the projection method, another costly operation intended to localize errors (i.e., to detect the moduli associated with faulty digits). The well-known procedures mentioned above seem inefficient in terms of practical implementation, as they employ a mixed radix number system: transition to such a system is iterative and may affect the performance of a whole neurocomputer. Owing to the exclusion of these costly operations, the suggested approach significantly simplifies error correction procedures for integer numbers 2018-05-21T14:24:32Z 2018-05-21T14:24:32Z 2018 Статья Chervyakov, N.I., Lyakhov, P.A., Babenko, M.G., Lavrinenko, I.N., Lavrinenko, A.V., Deryabin, M.A., Nazarov, A.S. A new model to optimize the architecture of a fault-tolerant modular neurocomputer // Neurocomputing. - 2018. - Volume 303. - pp. 37-46. https://www.scopus.com/record/display.uri?eid=2-s2.0-85046691005&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=66c0b1a32aef918b6dc8f22f4ab4e9b7&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=0&citeCnt=0&searchTerm= https://dspace.ncfu.ru:443/handle/20.500.12258/220 en Neurocomputing application/pdf application/pdf Elsevier B.V.
institution СКФУ
collection Репозиторий
language English
topic Digital neuron
Hopfield neural network
Modular neurocomputer
Residue number system (RNS)
Very large scale integrated (VLSI) circuit
spellingShingle Digital neuron
Hopfield neural network
Modular neurocomputer
Residue number system (RNS)
Very large scale integrated (VLSI) circuit
Chervyakov, N. I.
Червяков, Н. И.
Lyakhov, P. A.
Ляхов, П. А.
Babenko, M. G.
Бабенко, М. Г.
Lavrinenko, I. N.
Лавриненко, И. Н.
Lavrinenko, A. V.
Лавриненко, А. В.
Deryabin, M. A.
Дерябин, М. А.
Nazarov, A. S.
Назаров, А. С.
A new model to optimize the architecture of a fault-tolerant modular neurocomputer
description In this paper, we present some results on error detection and correction in a modular neurocomputer that are based on redundant residue number systems. The error correction method developed below involves the modified Chinese Remainder Theorem with fractions and uses a Hopfield neural network to correct the errors. The suggested approach eliminates the need for extending the bases of a residue number system, a costly operation required in case of syndrome decoding with error syndromes calculation on the control bases of the system. Also the approach does not utilize the projection method, another costly operation intended to localize errors (i.e., to detect the moduli associated with faulty digits). The well-known procedures mentioned above seem inefficient in terms of practical implementation, as they employ a mixed radix number system: transition to such a system is iterative and may affect the performance of a whole neurocomputer. Owing to the exclusion of these costly operations, the suggested approach significantly simplifies error correction procedures for integer numbers
format Статья
author Chervyakov, N. I.
Червяков, Н. И.
Lyakhov, P. A.
Ляхов, П. А.
Babenko, M. G.
Бабенко, М. Г.
Lavrinenko, I. N.
Лавриненко, И. Н.
Lavrinenko, A. V.
Лавриненко, А. В.
Deryabin, M. A.
Дерябин, М. А.
Nazarov, A. S.
Назаров, А. С.
author_facet Chervyakov, N. I.
Червяков, Н. И.
Lyakhov, P. A.
Ляхов, П. А.
Babenko, M. G.
Бабенко, М. Г.
Lavrinenko, I. N.
Лавриненко, И. Н.
Lavrinenko, A. V.
Лавриненко, А. В.
Deryabin, M. A.
Дерябин, М. А.
Nazarov, A. S.
Назаров, А. С.
author_sort Chervyakov, N. I.
title A new model to optimize the architecture of a fault-tolerant modular neurocomputer
title_short A new model to optimize the architecture of a fault-tolerant modular neurocomputer
title_full A new model to optimize the architecture of a fault-tolerant modular neurocomputer
title_fullStr A new model to optimize the architecture of a fault-tolerant modular neurocomputer
title_full_unstemmed A new model to optimize the architecture of a fault-tolerant modular neurocomputer
title_sort new model to optimize the architecture of a fault-tolerant modular neurocomputer
publisher Elsevier B.V.
publishDate 2018
url https://www.scopus.com/record/display.uri?eid=2-s2.0-85046691005&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=66c0b1a32aef918b6dc8f22f4ab4e9b7&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=0&citeCnt=0&searchTerm=
https://dspace.ncfu.ru:443/handle/20.500.12258/220
work_keys_str_mv AT chervyakovni anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT červâkovni anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT lyakhovpa anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT lâhovpa anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT babenkomg anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT babenkomg anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT lavrinenkoin anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT lavrinenkoin anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT lavrinenkoav anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT lavrinenkoav anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT deryabinma anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT derâbinma anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT nazarovas anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT nazarovas anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT chervyakovni newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT červâkovni newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT lyakhovpa newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT lâhovpa newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT babenkomg newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT babenkomg newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT lavrinenkoin newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT lavrinenkoin newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT lavrinenkoav newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT lavrinenkoav newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT deryabinma newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT derâbinma newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT nazarovas newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
AT nazarovas newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer
_version_ 1760601083528347648