A new model to optimize the architecture of a fault-tolerant modular neurocomputer
In this paper, we present some results on error detection and correction in a modular neurocomputer that are based on redundant residue number systems. The error correction method developed below involves the modified Chinese Remainder Theorem with fractions and uses a Hopfield neural network to cor...
Sparad:
Huvudupphovsmän: | , , , , , , , , , , , , , |
---|---|
Materialtyp: | Статья |
Språk: | English |
Publicerad: |
Elsevier B.V.
2018
|
Ämnen: | |
Länkar: | https://www.scopus.com/record/display.uri?eid=2-s2.0-85046691005&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=66c0b1a32aef918b6dc8f22f4ab4e9b7&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=0&citeCnt=0&searchTerm= https://dspace.ncfu.ru:443/handle/20.500.12258/220 |
Taggar: |
Lägg till en tagg
Inga taggar, Lägg till första taggen!
|
id |
ir-20.500.12258-220 |
---|---|
record_format |
dspace |
spelling |
ir-20.500.12258-2202020-07-10T08:48:39Z A new model to optimize the architecture of a fault-tolerant modular neurocomputer Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Babenko, M. G. Бабенко, М. Г. Lavrinenko, I. N. Лавриненко, И. Н. Lavrinenko, A. V. Лавриненко, А. В. Deryabin, M. A. Дерябин, М. А. Nazarov, A. S. Назаров, А. С. Digital neuron Hopfield neural network Modular neurocomputer Residue number system (RNS) Very large scale integrated (VLSI) circuit In this paper, we present some results on error detection and correction in a modular neurocomputer that are based on redundant residue number systems. The error correction method developed below involves the modified Chinese Remainder Theorem with fractions and uses a Hopfield neural network to correct the errors. The suggested approach eliminates the need for extending the bases of a residue number system, a costly operation required in case of syndrome decoding with error syndromes calculation on the control bases of the system. Also the approach does not utilize the projection method, another costly operation intended to localize errors (i.e., to detect the moduli associated with faulty digits). The well-known procedures mentioned above seem inefficient in terms of practical implementation, as they employ a mixed radix number system: transition to such a system is iterative and may affect the performance of a whole neurocomputer. Owing to the exclusion of these costly operations, the suggested approach significantly simplifies error correction procedures for integer numbers 2018-05-21T14:24:32Z 2018-05-21T14:24:32Z 2018 Статья Chervyakov, N.I., Lyakhov, P.A., Babenko, M.G., Lavrinenko, I.N., Lavrinenko, A.V., Deryabin, M.A., Nazarov, A.S. A new model to optimize the architecture of a fault-tolerant modular neurocomputer // Neurocomputing. - 2018. - Volume 303. - pp. 37-46. https://www.scopus.com/record/display.uri?eid=2-s2.0-85046691005&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=66c0b1a32aef918b6dc8f22f4ab4e9b7&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=0&citeCnt=0&searchTerm= https://dspace.ncfu.ru:443/handle/20.500.12258/220 en Neurocomputing application/pdf application/pdf Elsevier B.V. |
institution |
СКФУ |
collection |
Репозиторий |
language |
English |
topic |
Digital neuron Hopfield neural network Modular neurocomputer Residue number system (RNS) Very large scale integrated (VLSI) circuit |
spellingShingle |
Digital neuron Hopfield neural network Modular neurocomputer Residue number system (RNS) Very large scale integrated (VLSI) circuit Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Babenko, M. G. Бабенко, М. Г. Lavrinenko, I. N. Лавриненко, И. Н. Lavrinenko, A. V. Лавриненко, А. В. Deryabin, M. A. Дерябин, М. А. Nazarov, A. S. Назаров, А. С. A new model to optimize the architecture of a fault-tolerant modular neurocomputer |
description |
In this paper, we present some results on error detection and correction in a modular neurocomputer that are based on redundant residue number systems. The error correction method developed below involves the modified Chinese Remainder Theorem with fractions and uses a Hopfield neural network to correct the errors. The suggested approach eliminates the need for extending the bases of a residue number system, a costly operation required in case of syndrome decoding with error syndromes calculation on the control bases of the system. Also the approach does not utilize the projection method, another costly operation intended to localize errors (i.e., to detect the moduli associated with faulty digits). The well-known procedures mentioned above seem inefficient in terms of practical implementation, as they employ a mixed radix number system: transition to such a system is iterative and may affect the performance of a whole neurocomputer. Owing to the exclusion of these costly operations, the suggested approach significantly simplifies error correction procedures for integer numbers |
format |
Статья |
author |
Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Babenko, M. G. Бабенко, М. Г. Lavrinenko, I. N. Лавриненко, И. Н. Lavrinenko, A. V. Лавриненко, А. В. Deryabin, M. A. Дерябин, М. А. Nazarov, A. S. Назаров, А. С. |
author_facet |
Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Babenko, M. G. Бабенко, М. Г. Lavrinenko, I. N. Лавриненко, И. Н. Lavrinenko, A. V. Лавриненко, А. В. Deryabin, M. A. Дерябин, М. А. Nazarov, A. S. Назаров, А. С. |
author_sort |
Chervyakov, N. I. |
title |
A new model to optimize the architecture of a fault-tolerant modular neurocomputer |
title_short |
A new model to optimize the architecture of a fault-tolerant modular neurocomputer |
title_full |
A new model to optimize the architecture of a fault-tolerant modular neurocomputer |
title_fullStr |
A new model to optimize the architecture of a fault-tolerant modular neurocomputer |
title_full_unstemmed |
A new model to optimize the architecture of a fault-tolerant modular neurocomputer |
title_sort |
new model to optimize the architecture of a fault-tolerant modular neurocomputer |
publisher |
Elsevier B.V. |
publishDate |
2018 |
url |
https://www.scopus.com/record/display.uri?eid=2-s2.0-85046691005&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=66c0b1a32aef918b6dc8f22f4ab4e9b7&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=0&citeCnt=0&searchTerm= https://dspace.ncfu.ru:443/handle/20.500.12258/220 |
work_keys_str_mv |
AT chervyakovni anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT červâkovni anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT lyakhovpa anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT lâhovpa anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT babenkomg anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT babenkomg anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT lavrinenkoin anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT lavrinenkoin anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT lavrinenkoav anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT lavrinenkoav anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT deryabinma anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT derâbinma anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT nazarovas anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT nazarovas anewmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT chervyakovni newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT červâkovni newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT lyakhovpa newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT lâhovpa newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT babenkomg newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT babenkomg newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT lavrinenkoin newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT lavrinenkoin newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT lavrinenkoav newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT lavrinenkoav newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT deryabinma newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT derâbinma newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT nazarovas newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer AT nazarovas newmodeltooptimizethearchitectureofafaulttolerantmodularneurocomputer |
_version_ |
1760601083528347648 |