Siirry sisältöön

Optimization of Artificial Neural Networks using Wavelet Transforms

The article presents the artificial neural networks performance optimization using wavelet trans- form. The existing approaches of wavelet transform implementation in neural networks imply either transfor- mation before neural network or using “wavenet” architecture, which requires new neural netw...

Täydet tiedot

Tallennettuna:
Bibliografiset tiedot
Päätekijät: Vershkov, N. A., Вершков, Н. А., Babenko, M. G., Бабенко, М. Г., Kuchukov, V. A., Кучуков, В. А., Kucherov, N. N., Кучеров, Н. Н., Kuchukova, N. N., Кучукова, Н. Н.
Aineistotyyppi: Статья
Kieli:English
Julkaistu: 2023
Aiheet:
Linkit:https://dspace.ncfu.ru/handle/20.500.12258/22262
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!
id ir-20.500.12258-22262
record_format dspace
spelling ir-20.500.12258-222622023-01-26T14:33:49Z Optimization of Artificial Neural Networks using Wavelet Transforms Vershkov, N. A. Вершков, Н. А. Babenko, M. G. Бабенко, М. Г. Kuchukov, V. A. Кучуков, В. А. Kucherov, N. N. Кучеров, Н. Н. Kuchukova, N. N. Кучукова, Н. Н. Artificial neural networks Wavelet transforms The article presents the artificial neural networks performance optimization using wavelet trans- form. The existing approaches of wavelet transform implementation in neural networks imply either transfor- mation before neural network or using “wavenet” architecture, which requires new neural network training approaches. The proposed approach is based on the representation of the neuron as a nonrecursive adaptive filter and wavelet filter application to obtain the low-frequency part of the image. It reduces the image size and filtering interference, which is usually high-frequency. Our wavelet transform model is based on the clas- sical representation of a forward propagation neural network or convolutional layers. It allows designing neu- ral networks with the wavelet transform based on existing libraries and does not require changes in the neural network training algorithm. It was tested on three MNIST-like datasets. As a result of testing, it was found that the speed gain is approximately 50 ± 5% with a slight loss of recognition quality of no more than 4%. For practitioner programmers, the proposed algorithm was tested on real images to distinguish animals and showed similar results as the MNIST-like tests. 2023-01-26T14:32:40Z 2023-01-26T14:32:40Z 2022 Статья Vershkov, N., Babenko, M., Tchernykh, A., Kuchukov, V., Kucherov, N., Kuchukova, N., Drozdov, A.Yu. Optimization of Artificial Neural Networks using Wavelet Transforms // Programming and Computer Software. - 2022. - 48 (6), pp. 376-384. - DOI: 10.1134/S036176882206007X http://hdl.handle.net/20.500.12258/22262 en Programming and Computer Software application/pdf application/pdf
institution СКФУ
collection Репозиторий
language English
topic Artificial neural networks
Wavelet transforms
spellingShingle Artificial neural networks
Wavelet transforms
Vershkov, N. A.
Вершков, Н. А.
Babenko, M. G.
Бабенко, М. Г.
Kuchukov, V. A.
Кучуков, В. А.
Kucherov, N. N.
Кучеров, Н. Н.
Kuchukova, N. N.
Кучукова, Н. Н.
Optimization of Artificial Neural Networks using Wavelet Transforms
description The article presents the artificial neural networks performance optimization using wavelet trans- form. The existing approaches of wavelet transform implementation in neural networks imply either transfor- mation before neural network or using “wavenet” architecture, which requires new neural network training approaches. The proposed approach is based on the representation of the neuron as a nonrecursive adaptive filter and wavelet filter application to obtain the low-frequency part of the image. It reduces the image size and filtering interference, which is usually high-frequency. Our wavelet transform model is based on the clas- sical representation of a forward propagation neural network or convolutional layers. It allows designing neu- ral networks with the wavelet transform based on existing libraries and does not require changes in the neural network training algorithm. It was tested on three MNIST-like datasets. As a result of testing, it was found that the speed gain is approximately 50 ± 5% with a slight loss of recognition quality of no more than 4%. For practitioner programmers, the proposed algorithm was tested on real images to distinguish animals and showed similar results as the MNIST-like tests.
format Статья
author Vershkov, N. A.
Вершков, Н. А.
Babenko, M. G.
Бабенко, М. Г.
Kuchukov, V. A.
Кучуков, В. А.
Kucherov, N. N.
Кучеров, Н. Н.
Kuchukova, N. N.
Кучукова, Н. Н.
author_facet Vershkov, N. A.
Вершков, Н. А.
Babenko, M. G.
Бабенко, М. Г.
Kuchukov, V. A.
Кучуков, В. А.
Kucherov, N. N.
Кучеров, Н. Н.
Kuchukova, N. N.
Кучукова, Н. Н.
author_sort Vershkov, N. A.
title Optimization of Artificial Neural Networks using Wavelet Transforms
title_short Optimization of Artificial Neural Networks using Wavelet Transforms
title_full Optimization of Artificial Neural Networks using Wavelet Transforms
title_fullStr Optimization of Artificial Neural Networks using Wavelet Transforms
title_full_unstemmed Optimization of Artificial Neural Networks using Wavelet Transforms
title_sort optimization of artificial neural networks using wavelet transforms
publishDate 2023
url https://dspace.ncfu.ru/handle/20.500.12258/22262
work_keys_str_mv AT vershkovna optimizationofartificialneuralnetworksusingwavelettransforms
AT verškovna optimizationofartificialneuralnetworksusingwavelettransforms
AT babenkomg optimizationofartificialneuralnetworksusingwavelettransforms
AT babenkomg optimizationofartificialneuralnetworksusingwavelettransforms
AT kuchukovva optimizationofartificialneuralnetworksusingwavelettransforms
AT kučukovva optimizationofartificialneuralnetworksusingwavelettransforms
AT kucherovnn optimizationofartificialneuralnetworksusingwavelettransforms
AT kučerovnn optimizationofartificialneuralnetworksusingwavelettransforms
AT kuchukovann optimizationofartificialneuralnetworksusingwavelettransforms
AT kučukovann optimizationofartificialneuralnetworksusingwavelettransforms
_version_ 1760600744152530944