Nonlocal transport equations in multiscale media. Modeling, dememorization, and discretizations
In this paper, we consider a class of convection-diffusion equations with memory effects. These equations arise as a result of homogenization or upscaling of linear transport equations in heterogeneous media and play an important role in many applications. First, we present a dememorization techniqu...
Сохранить в:
| Главные авторы: | Vabishchevich, P. N., Вабищевич, П. Н. |
|---|---|
| Формат: | Статья |
| Язык: | English |
| Опубликовано: |
2023
|
| Темы: | |
| Online-ссылка: | https://dspace.ncfu.ru/handle/20.500.12258/23463 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Схожие документы
-
Multiscale model reduction for the time fractional thermoporoelasticity problem in fractured and heterogeneous media
Автор: Alikhanov, A. A., и др.
Опубликовано: (2025) -
Partial learning using partially explicit discretization for multicontinuum/multiscale problems. Fractured poroelastic media simulation
Автор: Tyrylgin, A. A., и др.
Опубликовано: (2023) -
Machine Learning for Online Multiscale Model Reduction for Poroelasticity Problem in Heterogeneous Media
Автор: Tyrylgin, A. A., и др.
Опубликовано: (2025) -
A computational macroscale model for the time fractional poroelasticity problem in fractured and heterogeneous media
Автор: Tyrylgin, A. A., и др.
Опубликовано: (2022) -
Partial learning using partially explicit discretization for multicontinuum/multiscale problems with limited observation: Language interactions simulation
Автор: Tyrylgin, A. A., и др.
Опубликовано: (2023)