Approximate solution of the Cauchy problem for a first-order integrodifferential equation with solution derivative memory
We consider the Cauchy problem for a first-order evolution equation with memory in a finite-dimensional Hilbert space when the integral term is related to the time derivative of the solution. The main problems of the approximate solution of such nonlocal problems are due to the necessity to work wit...
Сохранить в:
| Главные авторы: | Vabishchevich, P. N., Вабищевич, П. Н. |
|---|---|
| Формат: | Статья |
| Язык: | English |
| Опубликовано: |
2023
|
| Темы: | |
| Online-ссылка: | https://dspace.ncfu.ru/handle/20.500.12258/23464 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Схожие документы
-
A novel explicit fast numerical scheme for the Cauchy problem for integro-differential equations with a difference kernel and its application
Автор: Alikhanov, A. A., и др.
Опубликовано: (2024) -
Estimation of the Solution of a Spatial Parabolic Equation Describing Anisotropic Geological Systems
Автор: Tarasenko, E. O., и др.
Опубликовано: (2024) -
Nonlocal transport equations in multiscale media. Modeling, dememorization, and discretizations
Автор: Vabishchevich, P. N., и др.
Опубликовано: (2023) -
Splitting Schemes for Evolution Equations with a Factorized Operator
Автор: Vabishchevich, P. N., и др.
Опубликовано: (2024) -
Numerical method for fractional sub-diffusion equation with space–time varying diffusivity and smooth solution
Автор: Alikhanov, A. A., и др.
Опубликовано: (2025)