Пропуск в контексте

A new approach to training neural networks using natural gradient descent with momentum based on Dirichlet distributions

In this paper, we propose a natural gradient descent algorithm with momentum based on Dirichlet distributions to speed up the training of neural networks. This approach takes into account not only the direction of the gradients, but also the convexity of the minimized function, which significantly a...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Abdulkadirov, R. I., Абдулкадиров, Р. И., Lyakhov, P. A., Ляхов, П. А.
Формат: Статья
Язык:English
Опубликовано: 2023
Темы:
Online-ссылка:https://dspace.ncfu.ru/handle/20.500.12258/23476
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
id ir-20.500.12258-23476
record_format dspace
spelling ir-20.500.12258-234762025-02-12T08:32:32Z A new approach to training neural networks using natural gradient descent with momentum based on Dirichlet distributions Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Dirichlet distributions Natural gradient descent Pattern recognition Machine learning In this paper, we propose a natural gradient descent algorithm with momentum based on Dirichlet distributions to speed up the training of neural networks. This approach takes into account not only the direction of the gradients, but also the convexity of the minimized function, which significantly accelerates the process of searching for the extremes. Calculations of natural gradients based on Dirichlet distributions are presented, with the proposed approach introduced into an error backpropagation scheme. The results of image recognition and time series forecasting during the experiments show that the proposed approach gives higher accuracy and does not require a large number of iterations to minimize loss functions compared to the methods of stochastic gradient descent, adaptive moment estimation and adaptive parameter-wise diagonal quasi-Newton method for nonconvex stochastic optimization. 2023-05-12T12:40:37Z 2023-05-12T12:40:37Z 2023 Статья Abdulkadirov, R.I., Lyakhov, P.A. A new approach to training neural networks using natural gradient descent with momentum based on Dirichlet distributions // Computer Optics. - 2023. - 47 (1), pp. 160-169. - DOI: 10.18287/2412-6179-CO-1147 http://hdl.handle.net/20.500.12258/23476 en Computer Optics application/pdf application/pdf
institution СКФУ
collection Репозиторий
language English
topic Dirichlet distributions
Natural gradient descent
Pattern recognition
Machine learning
spellingShingle Dirichlet distributions
Natural gradient descent
Pattern recognition
Machine learning
Abdulkadirov, R. I.
Абдулкадиров, Р. И.
Lyakhov, P. A.
Ляхов, П. А.
A new approach to training neural networks using natural gradient descent with momentum based on Dirichlet distributions
description In this paper, we propose a natural gradient descent algorithm with momentum based on Dirichlet distributions to speed up the training of neural networks. This approach takes into account not only the direction of the gradients, but also the convexity of the minimized function, which significantly accelerates the process of searching for the extremes. Calculations of natural gradients based on Dirichlet distributions are presented, with the proposed approach introduced into an error backpropagation scheme. The results of image recognition and time series forecasting during the experiments show that the proposed approach gives higher accuracy and does not require a large number of iterations to minimize loss functions compared to the methods of stochastic gradient descent, adaptive moment estimation and adaptive parameter-wise diagonal quasi-Newton method for nonconvex stochastic optimization.
format Статья
author Abdulkadirov, R. I.
Абдулкадиров, Р. И.
Lyakhov, P. A.
Ляхов, П. А.
author_facet Abdulkadirov, R. I.
Абдулкадиров, Р. И.
Lyakhov, P. A.
Ляхов, П. А.
author_sort Abdulkadirov, R. I.
title A new approach to training neural networks using natural gradient descent with momentum based on Dirichlet distributions
title_short A new approach to training neural networks using natural gradient descent with momentum based on Dirichlet distributions
title_full A new approach to training neural networks using natural gradient descent with momentum based on Dirichlet distributions
title_fullStr A new approach to training neural networks using natural gradient descent with momentum based on Dirichlet distributions
title_full_unstemmed A new approach to training neural networks using natural gradient descent with momentum based on Dirichlet distributions
title_sort new approach to training neural networks using natural gradient descent with momentum based on dirichlet distributions
publishDate 2023
url https://dspace.ncfu.ru/handle/20.500.12258/23476
work_keys_str_mv AT abdulkadirovri anewapproachtotrainingneuralnetworksusingnaturalgradientdescentwithmomentumbasedondirichletdistributions
AT abdulkadirovri anewapproachtotrainingneuralnetworksusingnaturalgradientdescentwithmomentumbasedondirichletdistributions
AT lyakhovpa anewapproachtotrainingneuralnetworksusingnaturalgradientdescentwithmomentumbasedondirichletdistributions
AT lâhovpa anewapproachtotrainingneuralnetworksusingnaturalgradientdescentwithmomentumbasedondirichletdistributions
AT abdulkadirovri newapproachtotrainingneuralnetworksusingnaturalgradientdescentwithmomentumbasedondirichletdistributions
AT abdulkadirovri newapproachtotrainingneuralnetworksusingnaturalgradientdescentwithmomentumbasedondirichletdistributions
AT lyakhovpa newapproachtotrainingneuralnetworksusingnaturalgradientdescentwithmomentumbasedondirichletdistributions
AT lâhovpa newapproachtotrainingneuralnetworksusingnaturalgradientdescentwithmomentumbasedondirichletdistributions
_version_ 1842245568332562432