A new approach to training neural networks using natural gradient descent with momentum based on Dirichlet distributions
In this paper, we propose a natural gradient descent algorithm with momentum based on Dirichlet distributions to speed up the training of neural networks. This approach takes into account not only the direction of the gradients, but also the convexity of the minimized function, which significantly a...
Сохранить в:
| Главные авторы: | Abdulkadirov, R. I., Абдулкадиров, Р. И., Lyakhov, P. A., Ляхов, П. А. |
|---|---|
| Формат: | Статья |
| Язык: | English |
| Опубликовано: |
2023
|
| Темы: | |
| Online-ссылка: | https://dspace.ncfu.ru/handle/20.500.12258/23476 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Схожие документы
-
Physics-informed neural network model using natural gradient descent with Dirichlet distribution
Автор: Abdulkadirov, R. I., и др.
Опубликовано: (2025) -
Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
Автор: Abdulkadirov, R. I., и др.
Опубликовано: (2024) -
Analysis of an Existing Method for Detecting Adversarial Attacks on Deep Neural Networks
Автор: Lapina, M. A., и др.
Опубликовано: (2024) -
Enhancing Drone Detection via Transformer Neural Network and Positive–Negative Momentum Optimizers
Автор: Lyakhov, P. A., и др.
Опубликовано: (2025) -
Development of an Approach to Confidential Learning with Errors in the Design of Neural Networks
Автор: Bezuglova, E. S., и др.
Опубликовано: (2024)